

Windows PowerShell in Action

Windows PowerShell
in Action

BRUCE PAYETTE

M A N N I N G

Greenwich
(74° w. long.)

For online information and ordering of this and other Manning books, please go to
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications
Sound View Court 3B Fax: (609) 877-8256
Greenwich, CT 06830 email: orders@manning.com

©2007 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Benjamin Berg
Sound View Court 3B Typesetter: Gordan Salinovic
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1932394-90-7

Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 11 10 09 08 07

To my wife, Tina, for all her love and support

brief contents

Part 1 Learning PowerShell 1

1 Welcome to PowerShell 3

2 The basics 25

3 Working with types 55

4 Operators and expressions 87

5 Advanced operators and variables 115

6 Flow control in scripts 147

7 Functions and scripts 177

8 Scriptblocks and objects 214

9 Errors, exceptions, and script debugging 251

Part 2 Using PowerShell 295

10 Processing text, files, and XML 297

11 Getting fancy—.NET and WinForms 344

12 Windows objects: COM and WMI 392

13 Security, security, security 440
vii

contents

foreword xv
preface xvii
acknowledgments xix
about this book xx

Part 1 LEARNING POWERSHELL 1

1 Welcome to PowerShell 3
1.1 What is PowerShell? 5

Shells, command-lines, and scripting languages 5 ✦ Why a new shell?
Why now? 7 ✦ The last mile problem 7

1.2 Soul of a new language 8
Learning from history 8 ✦ Leveraging .NET 9

1.3 Brushing up on objects 10
Reviewing object-oriented programming 11
Objects in PowerShell 12

1.4 Dude! Where’s my code? 13
Installing and starting PowerShell 13 ✦ Command editing 15
Command completion 16 ✦ Evaluating basic expressions 17
Processing data 18

1.5 Summary 23

2 The basics 25
2.1 Command concepts and terminology 27

Commands and cmdlets 27 ✦ Command categories 30
Aliases and elastic syntax 34

2.2 Parsing and PowerShell 37
How PowerShell parses 37 ✦ Quoting 38 ✦ Expression mode and
command mode parsing 41 ✦ Statement termination 43
ix

2.3 Pipelines and commands 45
Pipelines and streaming behavior 46
Parameters and parameter binding 47

2.4 Formatting and output 48
The formatting cmdlets 49 ✦ The outputter cmdlets 51

2.5 Summary 54

3 Working with types 55
3.1 Type management in the wild, wild west 55

PowerShell: a type-promiscuous language 56
The type system and type adaptation 58

3.2 Basic types and literals 60
Strings 60 ✦ Numbers and numeric literals 64 ✦ Collections:
dictionaries and hashtables 66 ✦ Collections: arrays and
sequences 71 ✦ Type literals 75

3.3 Type conversions 79
How type conversion works 79 ✦ PowerShell’s type-conversion
algorithm 82 ✦ Special type conversions in parameter binding 85

3.4 Summary 86

4 Operators and expressions 87
4.1 Arithmetic operators 89

The addition operator 89 ✦ The multiplication operator 92
Subtraction, division, and the modulus operator 94

4.2 The assignment operators 96
Multiple assignments 97 ✦ Multiple assignments with type qualifiers 98
Assignment operations as value expressions 100

4.3 Comparison operators 101
Scalar comparisons 102 ✦ Using comparison operators with collections 105

4.4 The pattern matching operators 107
Wildcard patterns 107 ✦ Regular expressions 108

4.5 Logical and bitwise operators 113

4.6 Summary 113

5 Advanced operators and variables 115
5.1 Operators for working with types 115

5.2 The unary operators 117

5.3 Grouping, subexpressions, and array subexpressions 119

5.4 Array operators 123
The comma operator “,” 123 ✦ The range operator 126
Array indexing 127
x CONTENTS

5.5 Property and method operators 132
The “.” operator 133 ✦ Static methods and the “::” operator 136

5.6 The PowerShell format operator -F 137

5.7 Redirection and the redirection operators 138

5.8 Variables 141

5.9 Summary 145

6 Flow control in scripts 147
6.1 Using the if/elseif/else statement 148

6.2 The while loop 151

6.3 The do/while loop 152

6.4 The for loop 153

6.5 The foreach loop 155

6.6 Labels, break, and continue 159

6.7 The PowerShell switch statement 161
Basic use of the PowerShell switch statement 161 ✦ Using wildcard patterns
with the switch statement 163 ✦ Using regular expressions with the switch
statement 164 ✦ Processing files with the switch statement 167
Using the $switch loop enumerator in the switch statement 168

6.8 Flow control using cmdlets 169
The Foreach-Object cmdlet 170 ✦ The Where-Object cmdlet 173

6.9 The value of statements 175

6.10Summary 176

7 Functions and scripts 177
7.1 Function basics 178

7.2 Formal parameters and the param statement 181
Specifying parameter types 183 ✦ Handling variable numbers of
arguments 185 ✦ Initializing function parameters 186 ✦ Using switch
parameters to define flags 188 ✦ Variables and scoping rules 190
Using variable scope modifiers 193

7.3 Returning values from functions 193
Debugging function output 196 ✦ The return statement 198

7.4 Using functions in a pipeline 199
Filters and functions 201 ✦ Functions as cmdlets 202

7.5 Managing functions 204
CONTENTS xi

7.6 Scripts at long last 205
Passing arguments to scripts 207 ✦ The param statement 208 ✦ Scopes
and scripts 208 ✦ Exiting scripts and the exit statement 209
Dotting scripts and functions 210

7.7 Summary 212

8 Scriptblocks and objects 214
8.1 Scriptblock basics 215

Invoking commands 216 ✦ Getting CommandInfo objects 217 ✦ The
ScriptBlock literal 219 ✦ Defining functions at runtime 220

8.2 Building and manipulating objects 222
Looking at members 222 ✦ Synthetic members 223 ✦ Using Add-
Member to extend objects 224 ✦ Using the select-object cmdlet 230

8.3 A closer look at the type-system plumbing 233
Adding a property 235 ✦ Shadowing an existing property 236

8.4 Extending the PowerShell language 237
Little languages 237 ✦ Adding a CustomClass keyword to PowerShell 238

8.5 Type extension 243

8.6 Building code at runtime 245
The Invoke-Expression cmdlet 245 ✦ The ExecutionContext variable 246
Creating functions using the function: drive 248

8.7 Summary 249

9 Errors, exceptions, and script debugging 251
9.1 Error handling 252

ErrorRecords and the error stream 253 ✦ The $error variable and
–ErrorVariable parameter 256 ✦ The $? and $LASTEXITCODE
variables 259 ✦ $ErrorActionPreference and the -ErrorAction
parameter 261

9.2 Dealing with errors that terminate execution 265
The trap statement 265 ✦ The throw statement 268

9.3 Script debugging 270
Debugging with the host APIs 270 ✦ The Set-PSDebug cmdlet 271
Tracing statement execution 271 ✦ Stepping through statement
execution 275 ✦ Catching undefined variables with strict mode 276

9.4 Nested prompts and breakpoints 277
Suspending a script while in step-mode 277 ✦ Creating a breakpoint
command 279 ✦ The script call stack, or “How did I get here?” 281

9.5 Low-level tracing 283
The Trace-Command cmdlet 283 ✦ Tracing type conversions 285
Tracing parameter binding 287
xii CONTENTS

9.6 The PowerShell event log 291
Examining the event log 291
Exchange 2007 and the PowerShell event log 293

9.7 Summary 293

Part 2 USING POWERSHELL 295

10 Processing text, files, and XML 297
10.1 Processing unstructured text 298

Using System.String to work with text 298
Using regular expressions to manipulate text 304

10.2 File processing 305
Working with PSDrives 307 ✦ Working with paths that contain
wildcards 309 ✦ Reading and writing files 313
Searching files with the Select-String cmdlet 319

10.3 XML processing 322
Using XML as objects 322 ✦ Loading and saving XML files. 326
Processing XML documents in a pipeline 333 ✦ Using XPath 334
The Import-Clixml and Export-Clixml cmdlets 339

10.4 Summary 342

11 Getting fancy—.NET and WinForms 344
11.1 Using .NET from PowerShell 345

.NET basics 345 ✦ Working with assemblies 346 ✦ Finding types 348
Creating instances of types 350 ✦ PowerShell is not C#—A cautionary
tale 353 ✦ Working with generic types 358

11.2 PowerShell and the Internet 361
Example: Retrieving a web page 361 ✦ Example: Processing an RSS
feed 362 ✦ Example: Writing a web server in PowerShell 364

11.3 PowerShell and graphical user interfaces 371
WinForms basics 371 ✦ Example: "My first form" 372 ✦ Example: Simple
dialog 374 ✦ Example: A WinForms library 376 ✦ Example: A simple
calculator 379 ✦ Example: Displaying data 385
Example: Using the GDI+ to do graphics 387

11.4 Summary 391

12 Windows objects: COM and WMI 392
12.1 Working with COM in PowerShell 393

Automating Windows with COM 396 ✦ Networking, applications, and
toys 405 ✦ Using the ScriptControl object 415
Issues with COM 417
CONTENTS xiii

12.2 Working with WMI in PowerShell 421
Exploring WMI—what is it, and why do you care? 421 ✦ The Get-
WmiObject cmdlet 422 ✦ The WMI object adapter 423 ✦ WMI
shootout—VBScript versus PowerShell 425 ✦ The WMI type shortcuts 429
Working with WMI methods 432 ✦ Working with WMI events 433
Putting modified WMI objects back 434

12.3 So which object model should I choose? 437

12.4 Summary 437

13 Security, security, security 440
13.1 Introduction to security 441

What security is 441 ✦ What security is not 441
Perception and security 442

13.2 Security modeling 443
Introduction to threat modeling 444 ✦ Classifying threats using the STRIDE
model 444 ✦ Security basics: Threats, assets, and mitigations 445

13.3 Securing the PowerShell environment 449
Secure by default 449 ✦ Managing the command path 450
Choosing a script execution policy 451

13.4 Signing scripts 453
How public key encryption and one-way hashing work 453 ✦ Signing
authorities and certificates 454 ✦ Creating a self-signed certificate 455
Using a certificate to sign a script 458 ✦ Enabling strong private key
protection for your certificate 462

13.5 Writing secure scripts 465
Using the SecureString class 465 ✦ Working with credentials 468
Avoiding Invoke-Expression 471

13.6 Summary 474

appendix A Comparing PowerShell to other languages 476

appendix B Admin examples 499

appendix C The PowerShell grammar 520

index 531
xiv CONTENTS

foreword

Windows PowerShell has the widest range of any language I know. You can quickly learn the
basic concepts and use it as an interactive command line shell to write simple, ad hoc scripts.
Learn a bit more and you can use it to write rich, sophisticated scripts to manage your most
important production servers. Learn a bit more still, and you can write .NET programs to access
the awesome power of the .NET frameworks.

When we started to develop PowerShell, I was advised to deliver an interactive shell or script-
ing language and to avoid .NET programming, because C# and VB.NET had that covered. This
had been the standard approach of every OS in the last 30 years. I knew that we could do better.
A new architecture based upon a deep rethink of the problem to provide our customers with a
single solution which would do the following:

• Allow beginners a quick start and the ability to become advanced users over time, enhanc-
ing their careers and salary potential.

• Let advanced users use it in lightweight, ad hoc ways for simple problems and in sophisti-
cated, production-oriented ways for complex problems.

• Create a large community of beginners and advanced users to share experiences,
approaches, and scripts.

• Create a large ecosystem which would increase the opportunities for job hunters as well as
increase the hiring pool for employers.

Designing and implementing a solution that could do all that was challenging. At times, we had
to make some difficult choices, but we were on a mission and we stuck to our vision. This is
where Bruce Payette comes in. Bruce is a founding member of the PowerShell team and the
development leader of the PowerShell language. I paired Bruce with Jim Truher, a Program Man-
ager (PM) and another founding member of the team. As a PM, Jim was the advocate for the user
and the voice of sanity. Bruce and Jim worked incredibly well together, producing the PowerShell
language and addressing the many problems that came up. Bruce is a walking encyclopedia of
every good, bad, solid, and wacky language idea that has been tried in the last few decades. As
issues came up, Bruce explained how the different languages addressed similar issues, where and
why they worked well, or failed. Bruce was crucial in solving the problems we encountered and
in fulfilling our ambitious goals.
xv

Since PowerShell is new, we know that you will have to invest time to learn it. When we added
a new concept, technique, or syntax, we did so in a way that allows you to reuse that element every-
where so you can minimize the number of things to learn and maximize the value of each one.

 One of my favorite jokes goes like this: Two guys are in the woods when they encounter a
bear who decides to eat them for lunch. They are about to run away when one of them stops to
put on a pair of running shoes. His buddy informs him that bears can run over 30 mph and that
there is no way he can outrun it, even with running shoes. His friend replies, “I don’t have to out-
run the bear, I just have to outrun you.”

It is often difficult to understand something you see or read until you understand what moti-
vated it. One of reasons I love Bruce’s book is that, in addition to providing a great language ref-
erence, it provides a clear description of the motivations and the thinking behind the language.
This is a book that only Bruce could have written.

JEFFREY SNOVER

Windows PowerShell Architect
xvi FOREWORD

preface

Wow, I wrote a book! How the heck did that happen? One moment you’re a humble program-
ming language designer, and the next you’re up until 2 a.m. every night trying to figure out how
to say “and in the next example” 500 times without being boring.

So why write it? Because of PowerShell. Although PowerShell draws heavily from existing tech-
nologies, it combines them in novel ways. This novelty leads to misunderstandings, which then
turn into urban myths, such as, PowerShell does X because its designers are kitten-eating aliens.

Trust me–we’re not.
As we showed our work to the world (three public betas and two release candidates), I found

that there were a few questions that were being asked over and over again. These questions would
arise as a result of an earlier language experience that the user had had. Typically, a simple expla-
nation was all it took to clear up the confusion (we had a very smart group of beta testers). How-
ever, we couldn’t keep answering these questions one-by-one; that just wouldn’t scale. There
needed to be a way to gather the information in one place. This book is my attempt to do just that.

The other astonishing thing was just how much power comes out of the synergy of the tech-
nologies underlying PowerShell. We saw this in our own internal uses of PowerShell as well as
in some of the community examples. The PowerShell team read people’s blogs and was astonished
by the creativity that was being demonstrated. So the second goal of this book is to foster that
creativity by conveying how capable PowerShell is.

Finally, this is the book I had always wanted to read myself. I love programming languages and
reading about them, and the best programming books I found are the ones that explain not only
“what” but also “why.” Look at the books that continue to sell year after year, like Kernighan and
Ritchie’s The C Programming Language, Stroustrup’s C++ book, and Ousterhout’s TCL book. The
TCL book is a very good example: it describes an early version of the TCL language, it has never
been updated, yet it continues to sell. Why? This book, and others like it, give the reader some-
thing more than just technical detail. They convey a sense of the overall design as well as some
of the intent of the designer. So please let me know if you think I succeed in doing that with this
book, OK?

The very last goal of the book was to help build and maintain momentum around PowerShell.
PowerShell was released around the time of Microsoft’s biggest product release ever: the revamped
operating system Vista together with the new Office suite (with all those wild graphical 3D doo-
hickeys added everywhere). But we’re just a command line. There is a good rule to follow when
xvii

planning a product launch: never open a lemonade stand next to a Wal-Mart. But we did, and
now…would you care for some lemonade?

Come on in, learn PowerShell, be creative, and, above all, have fun!
xviii PREFACE

acknowledgments

This book is for my wife, Tina. It literally wouldn’t exist without her patience, support, and
encouragement. She kept me fed, sane, and she even read early drafts of material about which she
knows nothing. Now that’s support! She also contributed the Gnome picture in chapter 13 and
the bird-watching information and pictures in chapter 2.

Thanks to my parents for their love and support over the years. Yes, I am finally done with
the book.

Of course there wouldn’t be a PowerShell book without a PowerShell product in the first place,
and PowerShell wouldn’t exist without the vision of its chief architect, Jeffrey Snover. Special
thanks to Jeffrey for reviewing the mansucript and for agreeing to write the foreword to the book.

Another other major contributor was Jim Truher, my co-conspirator in the PowerShell lan-
guage design. Yes, it’s our fault.

I’d like to thank the rest of PowerShell language team: George Xie, Marcel Ortiz Soto (test-
dude extraordinaire), and Wei Wu, all of whom contributed enormously to the project. Kaushik
Pushpavanam, one of the original PowerShell team members, gets major props for introducing
a unit test framework into the PowerShell development process early and then getting the devel-
opers to use it and write tests. This gave us the freedom and agility to listen to customers and
incorporate changes throughout the development process. Thanks to Hilal Al-Hilali for knowing
how to ship; he’s a mean man with a theme. Thanks to Charlie Chase for winning. PowerShell
team members Arul Kumaravel and Abhishek Agrawal contributed significantly to the COM and
WMI examples in chapter 12. (Arul wrote the COM support, so who could have been better?)

Thanks also to all of the reviewers of the manuscript in its many stages of development: Jeffrey
Copeland, Arul Kumaravel, Rene Gobeyn, Jeffrey Snover, Steve Simmons, Keith Hill, Oliver
Sturm, Thomas Restrepro, Anil Radhakrishna, Alex K. Angelopoulos, David McMahon, Curt
Christianson, Anderson Patricio, Jon Skeet, and Robert. W. Anderson. A special thanks to Alex
Angelopolous who did the final technical review of the book. I’d also like to thank all of the par-
ticipants in the Manning Early Access Program. You guys rock! Much appreciation to everyone
at Manning, starting with my publisher Marjan Bace, my editor Michael Stephens, my develop-
ment editors Betsey Henkels and Jackie Carter, and all the production staff for their hard work
and patience with a new author.

Finally, I want to thank my friend and mentor David Tillbrook for never being satisfied with
the merely adequate. He has a lot to teach us all.
xix

about this book

Windows PowerShell is the next-generation shell and scripting environment created by
Microsoft. It’s intended to fix the weaknesses in existing Windows command-line and scripting
solutions. The driving force behind its creation was the need to address the problems in automat-
ing Windows system management. Windows lacked the ad hoc management capabilities found
in many competing systems. With PowerShell’s comprehensive support for .NET, it now has
broad application potential beyond the system administration space. PowerShell can be used for
text processing, general scripting, build management, creating test frameworks, and so on.

This book is written by one of principal creators of PowerShell. It uses many examples, both
small and large, to illustrate the features of the language and its environment and shows how to
compose those features into solutions, quickly and effectively.

Because of the broad focus of the PowerShell product, the book has a commensurately broad
focus. It was not designed as a cookbook of preconstructed management examples, such as how
to deal with Active Directory or how to script Exchange. Instead, it provides information about
the core of the PowerShell runtime and how to compose solutions in the “PowerShell Way.” After
reading this book, the reader should be able to take any example written in other languages, such
as C# or Visual Basic, and leverage those examples to build solutions in PowerShell. (To facilitate
this, appendix A in the book includes a number of discussions about the differences between Pow-
erShell and other languages.)

The other thing this book doesn’t cover is the PowerShell SDK. PowerShell is both a hostable
(that is, it can be embedded in other applications) as well as an extensible environment. This book
doesn’t address these topics. Instead, it focuses on the shell user and scripter. Though we do
explain how to load and use .NET assemblies from a PowerShell script in chapter 11.

Who should read this book?

This book is designed for anyone who wants to learn PowerShell and use it well. Rather than being
a book of recipes, this book tries to give the reader deep knowledge about how PowerShell works
and how to apply it. All users of PowerShell will find this book beneficial and useful.

If you’re a Windows sysadmin, this book is for you. If you’re a developer and you need to get
things done in a hurry, if you’re interested in .NET, or just if you like to experiment with com-
puters, PowerShell is for you—and this book is for you!
xx

Roadmap

The book is divided into two and a half parts. The two major parts of the book are “Learning
PowerShell” and “Using PowerShell,” described below. The “half ” part is primarily appendix B
which contains examples showing how to use PowerShell to solve system administration prob-
lems. In appendix A we provide comparisons between PowerShell and other languages. Finally, in
appendix C we present the grammar for the PowerShell language.

Part 1 “Learning PowerShell” is a comprehensive tour of the PowerShell language and run-
time. The goal is to introduce new PowerShell users to the language as well as to provide expe-
rienced users with deep insight into how and why things are the way they are.

In part 1 we look at all aspects of the PowerShell language, including the syntax, the type sys-
tem, and so on. Along the way, we’ll present examples showing how each feature works. Since
the goal of the first part of the book is to focus on the individual features of the environment,
most of the examples are small and are intended to be entered in an interactive session. The sec-
ond part of this book focuses on larger examples that bring the individual features together to
build larger applications.

Chapter 1 begins with some history and the rationale for why PowerShell was created in the
first place, followed by a quick tour of the features of the environment. The remaining chapters
in part 1 cover each element of the language, starting with basic PowerShell concepts in chapter 2.

Chapter 3 introduces the PowerShell type system and its relationship to .NET. This chapter
also presents the syntax for each of the PowerShell literal data types.

The discussion of operators and expressions (PowerShell has lots of these) begins in chapter 4,
which covers the basic arithmetic, comparison, and assignment operators. It also covers the wild-
card and regular expression pattern matching operators.

Chapter 5 continues the discussion of operators with the advanced operations for working
with arrays (indexing and slicing) and objects (properties and methods). It also covers output redi-
rection and the formatting operator, and introduces PowerShell variables.

Chapter 6 covers the PowerShell language constructs such as if statement and loops.
Chapter 7 introduces programming in PowerShell and covers functions and scripts, variable

scoping, and other programming-related topics.
Chapter 8 builds on the material in chapter 7 and introduces advanced programming tech-

niques, such as object construction and extensions. It also covers first-class functions (script-
blocks) and shows how to extend the PowerShell language using these features.

Chapter 9 completes part 1, covering the features available in PowerShell for handling errors
and debugging scripts.

In part 2 of the book, we shift our focus from individual features toward combining those fea-
tures into larger examples. This part of the book looks at applying PowerShell in specific tech-
nology areas and problem domains.

We begin in chapter 10, looking at how PowerShell can be used to attack the kind of text pro-
cessing tasks that have been the traditional domain of languages such as Perl. This chapter begins
with basic string processing, then introduces file processing (including handling binary files), and
finishes up with a section on working with XML documents.
ABOUT THIS BOOK xxi

Then, in chapter 11, we look at how we can discover and apply the vast capabilities of the .NET
framework from .NET. We cover locating, exploring, and instantiating types in the .NET frame-
work, including generic types. Then we look at a number of applications using these types, includ-
ing network programming and graphical programming with WinForms.

In chapter 12, we look at how to use and apply other Microsoft object technologies, specifically
COM and WMI. This includes using the application automation models to script applications
such as Microsoft Word using PowerShell. We look at how to use WMI from the command line
and in scripts to inspect, update, and manage a Windows system. We also spend some time look-
ing at how to interact with VBScript, Microsoft’s previous-generation scripting tool.

Finally, in chapter 13, we introduce the security features in PowerShell, along with a general
discussion of security. This is an important chapter to read. Like all powerful scripting tools (Perl,
Python, and so forth), PowerShell can be used to create malware such as virus and worm pro-
grams. The PowerShell runtime contains features which allow you to deploy it in a manner that
minimizes these risks.

That covers two out of the two and a half parts. Since the examples in part 2 of the book,
while larger, still focus on particular technology areas, we have appendix B, which presents exam-
ples where we solve some common system administration tasks using PowerShell. While it’s not
a complete management cookbook, it does show what can be done with PowerShell and how to
do it.

In appendix A we present comparisons of PowerShell with other programming or scripting
languages, including cmd.exe, UNIX shells, and VBScript. This appendix includes tips for expe-
rienced users and highlights some potential problems users of other languages may run into with
PowerShell. Finally, appendix C contains the annotated grammar and tokenization rules for the
PowerShell language along with syntax examples.

Code conventions

Since PowerShell is an interactive environment, we’ll show a lot of example commands as the user
would type them, followed by the responses the system generates. Before the command text, there
will be a prompt string that looks like this: PS (2) >. Following the prompt, the actual command
will be displayed in bold font. PowerShell’s responses will follow on the next few lines. Since
PowerShell doesn’t display anything in front of the output lines, you can distinguish output from
commands by looking for the prompt string. These conventions are illustrated as follows:

PS (1) > get-date

Sunday, October 08, 2006 11:24:42 PM

Sometimes commands will span multiple lines. In this case, subsequent lines of user input will
be preceded by >> as shown:

PS (2) > 1..3 |
>> foreach {"+" * $_}
>>
+

xxii ABOUT THIS BOOK

++
+++
PS (4) >

Note that the actual prompt sequence you see in your PowerShell session will be somewhat dif-
ferent than what is shown in the book. The prompt display is user-controllable by redefining the
prompt function (see section A.1.8 for more information). For this book, a prompt sequence was
chosen that includes command numbers to make it easier to follow the examples.

Source code for all of the examples used in this book can be downloaded from the publisher’s
website at www.manning.com/payette.

Author Online

Purchase of Windows PowerShell in Action includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical questions,
and receive help from the author and from other users. To access the forum and subscribe to it,
point your web browser to www.manning.com/payette. This page provides information on how
to get on the forum once you are registered, what kind of help is available, and the rules of con-
duct on the forum. Manning’s commitment to our readers is to provide a venue where a mean-
ingful dialog between individual readers and between readers and the author can take place. It is
not a commitment to any specific amount of participation on the part of the author, whose con-
tribution to the AO remains voluntary (and unpaid). We suggest you try asking the author some
challenging questions, lest his interest stray! The Author Online forum and the archives of previ-
ous discussions will be accessible from the publisher’s website as long as the book is in print.

About the author

BRUCE PAYETTE is one of the founding members of the Windows PowerShell team. He is co-
designer of the PowerShell language along with Jim Truher, and is the principal author of the
language implementation. He joined Microsoft in 2001, working on Interix—the POSIX sub-
system for Windows—and then moved to help found the PowerShell project shortly thereafter.
Prior to joining Microsoft, he worked at various companies including Softway (the creators of
Interix) and MKS (producers of the MKS Toolkit) building UNIX tools for Windows. He lives
in Bellevue, Washington, with his wife, many computers, and three extremely over-bonded and
very spoiled cats.

About the title

By combining introductions, overviews, and how-to examples, the In Action books are designed
to help learning and remembering. According to research in cognitive science, the things people
remember are things they discover during self-motivated exploration.

Although no one at Manning is a cognitive scientist, we are convinced that for learning to
become permanent, it must pass through stages of exploration, play, and, interestingly, retelling
of what is being learned. People understand and remember new things, which is to say they master
them, only after actively exploring them. Humans learn in action. An essential part of an In Action
guide is that it is example-driven. It encourages the reader to try things out, to play with new code,
and explore new ideas.
ABOUT THIS BOOK xxiii

There is another, more mundane, reason for the title of this book: our readers are busy. They
use books to do a job or solve a problem. They need books that allow them to jump in and jump
out easily and learn just what they want just when they want it. They need books that aid them
in action. The books in this series are designed for such readers.

About the cover illustration

The figure on the cover of Windows PowerShell in Action is a “Mufti, the chief of religion,” or
the chief scholar who interpreted the religious law and whose pronouncements on matters both
large and small were binding to the faithful. The illustration is taken from a collection of cos-
tumes of the Ottoman Empire published on January 1, 1802, by William Miller of Old Bond
Street, London. The title page is missing from the collection and we have been unable to track it
down to date. The book’s table of contents identifies the figures in both English and French, and
each illustration bears the names of two artists who worked on it, both of whom would no doubt
be surprised to find their art gracing the front cover of a computer programming book...two
hundred years later.

The collection was purchased by a Manning editor at an antiquarian flea market in the
“Garage” on West 26th Street in Manhattan. The seller was an American based in Ankara, Tur-
key, and the transaction took place just as he was packing up his stand for the day. The Manning
editor did not have on his person the substantial amount of cash that was required for the purchase
and a credit card and check were both politely turned down. With the seller flying back to Ankara
that evening the situation was getting hopeless. What was the solution? It turned out to be noth-
ing more than an old-fashioned verbal agreement sealed with a handshake. The seller simply pro-
posed that the money be transferred to him by wire and the editor walked out with the bank
information on a piece of paper and the portfolio of images under his arm. Needless to say, we
transferred the funds the next day, and we remain grateful and impressed by this unknown per-
son’s trust in one of us. It recalls something that might have happened a long time ago.

The pictures from the Ottoman collection, like the other illustrations that appear on our cov-
ers, bring to life the richness and variety of dress customs of two centuries ago. They recall the
sense of isolation and distance of that period—and of every other historic period except our own
hyperkinetic present.

Dress codes have changed since then and the diversity by region, so
rich at the time, has faded away. It is now often hard to tell the inhabitant of one continent

from another. Perhaps, trying to view it optimistically, we have traded a cultural and visual diver-
sity for a more varied personal life. Or a more varied and interesting intellectual and technical life.
We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the computer
business with book covers based on the rich diversity of regional life of two centuries ago‚
brought back to life by the pictures from this collection.
xxiv ABOUT THIS BOOK

1
P A R T
Learning PowerShell
This book is composed of two parts. Part 1 is a comprehensive tour of the Power-
Shell language and runtime. The goal is to introduce new PowerShell users to the lan-
guage as well as provide experienced users with deep insight into how and why things
are the way they are. Part 2 focuses on larger examples that bring the individual fea-
tures together to build larger applications.

In part 1, we’ll look at all aspects of the PowerShell language, including the syntax
and the type system. Along the way, we’ll present examples showing how each feature
works. Since the goal of this part of the book is to focus on the individual features of
the environment, most examples are quite small and are intended to be entered in an
interactive session.

Chapter 1 begins with history and rationale for why PowerShell was created. It
then proceeds through a tour of the features of the environment. The remaining chap-
ters in part 1 touch on each element of the language, starting with the basic concepts
(chapter 2), then continuing through types (chapter 3), operators and expressions
(chapters 4 and 5), language constructs such as flow control statements (chapter 6),
and functions and scripts (chapter 7). Chapter 8 covers advanced programming tech-
niques and constructing objects, and chapter 9 covers PowerShell features for handling
errors and debugging scripts.

C H A P T E R 1

Welcome to PowerShell

1.1 What is PowerShell? 5
1.2 Soul of a new language 8
1.3 Brushing up on objects 10
1.4 Dude! Where’s my code? 13
1.5 Summary 23
Space is big. Really big. You just won’t believe how vastly hugely
mind-bogglingly big it is. I mean you may think it’s a long way down
the road to the chemist, but that’s just peanuts compared to space.

Don’t Panic.
 —Douglas Adams, The Hitchhiker’s Guide to the Galaxy

Welcome to Windows PowerShell, the new command and scripting language from
Microsoft. We begin this chapter with two quotes from The Hitchhiker’s Guide to the
Galaxy. What do they have to do with a new scripting language? In essence, where a
program solves a particular problem or problems, a programming language can solve
any problem, at least in theory. That’s the “big, really big” part. The “Don’t Panic” bit
is, well—don’t panic. While PowerShell is new and different, it has been designed to
leverage what you already know, making it easy to learn. It’s also designed to allow
you to learn it a bit at a time. Starting at the beginning, here’s the traditional “Hello
world” program in PowerShell.
3

"Hello world."

WHAT IS POWERSHELL?

As you can see, no panic needed. But “Hello world” by itself is not really very inter-
esting. Here’s something a bit more complicated:

dir $env:windir*.log | select-string -List error |
format-table path,linenumber –auto

Although this is more complex, you can probably still figure out what it does. It
searches all the log files in the Windows directory, looking for the string “error”, then
prints the full name of the matching file and the matching line number. “Useful, but
not very special,” you might think, because you can easily do this using cmd.exe on
Windows or bash on UNIX. So what about the “big, really big” thing? Well, how
about this example?

([xml](new-object net.webclient).DownloadString(
"http://blogs.msdn.com/powershell/rss.aspx"
)).rss.channel.item | format-table title,link

Now we’re getting somewhere. This script downloads the RSS feed from the Power-
Shell team weblog, and then displays the title and a link for each blog entry.

NOTE RSS stands for Really Simple Syndication. This is a mechanism that allows
programs to download web logs automatically so they can be read more
conveniently than in the browser.

By the way, you weren’t really expected to figure this example out yet. If you did, you
can move to the head of the class!

Finally, one last example:

[void][reflection.assembly]::LoadWithPartialName(
 "System.Windows.Forms")

$form = new-object Windows.Forms.Form
$form.Text = "My First Form"
$button = new-object Windows.Forms.Button
$button.text="Push Me!"
$button.Dock="fill"
$button.add_click({$form.close()})
$form.controls.add($button)
$form.Add_Shown({$form.Activate()})
$form.ShowDialog()

This script uses the Windows Forms library (Win-
Forms) to build a graphical user interface (GUI) that
has a single button displaying the text “Push Me”.
The window this script creates is shown in figure 1.1.

When you click the button, it closes the form and
exits the script. With this you go from “Hello world”
to a GUI application in less than two pages.

Now let’s come back down to earth for minute. The
intent of chapter 1 is to set the stage for understanding

Figure 1.1 When you run the

code from the example, this

window will be displayed. If

you don’t see it, it may be hid-

den behind another window.
4 CHAPTER 1 WELCOME TO POWERSHELL

PowerShell—what it is, what it isn’t and, almost as important—why we made the deci-
sions we made in designing the PowerShell language. Chapter 1 covers the goals of the
project along with some of the major issues we faced in trying to achieve those goals.
By the end of the chapter you should have a solid base from which to start learning and
using PowerShell to solve real-world problems. Of course all theory and no practice is
boring, so the chapter concludes with a number of small examples to give you a feel for
PowerShell. But first, a philosophical digression: while under development, the code-
name for this project was Monad. The name Monad comes from The Monadology by
Gottfried Wilhelm Leibniz, one of the inventors of calculus. Here is how Leibniz
defined the Monad, “The Monad, of which we shall here speak, is nothing but a simple
substance, which enters into compounds. By ‘simple’ is meant ‘without parts.’”

In The Monadology, Leibniz described a world of irreducible components from
which all things could be composed. This captures the spirit of the project: to create a
toolkit of simple pieces that you compose to create complex solutions.

1.1 WHAT IS POWERSHELL?

What is PowerShell and why was it created? As we said, PowerShell is the new com-
mand-line/scripting environment from Microsoft. The overall goal for this project
was to provide the best shell scripting environment possible for Microsoft Windows. This
statement has two parts, and they are equally important, as the goal was not just to
produce a good generic shell environment, but rather to produce one designed specif-
ically for the Windows environment. While drawing heavily from existing command-
line shell and scripting languages, the PowerShell language and runtime were
designed from scratch to be an optimal environment for the modern Windows oper-
ating system.

Historically, the Windows command line has been weak. This is mainly the result
of the early focus in Microsoft on computing for the average user, who is neither par-
ticularly technical nor particularly interested in computers. Most of the development
effort for Windows was put into improving the graphical environment for the non-
technical user, rather than creating an environment for the computer professional.
Although this was certainly an enormously successful commercial strategy for
Microsoft, it has left some segments of the community under-served.

In the next couple of sections, we’ll go over some of the other environmental
forces that led to the creation of PowerShell. By environmental forces, we mean the
various business pressures and practical requirements that needed to be satisfied. But
first we’ll refine our definitions of shell and scripting.

1.1.1 Shells, command-lines, and scripting languages

In the previous section, we called PowerShell a command-line shell. You may be ask-
ing, what is a shell? And how is that different from a command interpreter? What
about scripting languages? If you can script in a shell language, doesn’t that make it a
scripting language? In answering these questions, let’s start with shells.
WHAT IS POWERSHELL? 5

Defining what a shell is can be a bit tricky, especially at Microsoft, since pretty
much everything at Microsoft has something called a shell. Windows Explorer is a
shell. Even the Xbox has a shell. Historically, the term shell describes the piece of soft-
ware that sits over an operating system’s core functionality. This core functionality is
known as the operating system kernel (shell... kernel... get it?). A shell is the piece of
software that lets you access the functionality provided by the operating system. Win-
dows Explorer is properly called a shell because it lets you access the functionality of a
Windows system. For our purposes, though, we’re more interested in the traditional
text-based environment where the user types a command and receives a response. In
other words, a shell is a command-line interpreter. The two terms can be used for the
most part interchangeably.

If this is the case, then what is scripting and why are scripting languages not shells?
To some extent, there isn’t really a difference. Many scripting languages have a mode
in which they take commands from the user and then execute those commands to
return results. This mode of operation is called a Read-Evaluate-Print loop or REP
loop. Not all scripting languages have these interactive loops, but many do. In what
way is a scripting language with a REP loop not a shell? The difference is mainly in
the user experience. A proper command-line shell is also a proper user interface. As
such, a command line has to provide a number of features to make the user’s experi-
ence pleasant and customizable. The features that improve the user’s experience
include aliases (shortcuts for hard-to-type commands), wildcard matching so you
don’t have to type out full names, and the ability to start other programs without
having to do anything special such as calling a function to start the program. Finally,
command-line shells provide mechanisms for examining, editing, and re-executing
previously typed commands. These mechanisms are called command history.

If scripting languages can be shells, can shells be scripting languages? The answer
is, emphatically, yes. With each generation, the UNIX shell languages have grown
more and more powerful. It’s entirely possible to write substantial applications in a
modern shell language, such as bash or zsh. Scripting languages characteristically have
an advantage over shell languages, in that they provide mechanisms to help you
develop larger scripts by letting you break a script into components or modules.
Scripting languages typically provide more sophisticated features for debugging your
scripts. Next, scripting language runtimes are implemented in a way that makes their
code execution more efficient, so that scripts written in these languages execute more
quickly than they would in the corresponding shell script runtime. Finally, scripting
language syntax is oriented more toward writing an application than toward interac-
tively issuing commands.

In the end, there really is no hard and fast distinction between a shell language
and a scripting language. Some of the features that make a good scripting language
result in a poor shell user experience. Conversely, some of the features that make for a
good interactive shell experience can interfere with scripting. Since PowerShell’s goal
is to be both a good scripting language and a good interactive shell, balancing the
6 CHAPTER 1 WELCOME TO POWERSHELL

trade-offs between user-experience and scripting authoring was one of the major lan-
guage design challenges.

1.1.2 Why a new shell? Why now?

In the early part of this decade, Microsoft commissioned a study to identify areas
where it could improve its offerings in the server space. Server management, and par-
ticularly command-line management of Windows systems, were called out as areas
for improvement. While some might say that this is like discovering that water is wet,
the important point is that people cared about the problem. When comparing the
command-line manageability of a Windows system to a UNIX system, Windows was
found to be limited, and this was a genuine pain point with customers.

There are a number of reasons for the historically weak Windows command line.
First, as mentioned previously, limited effort had been put into improving the com-
mand line. Since the average desktop user doesn’t care about the command line, it
wasn’t considered important. Secondly, when writing graphical user interfaces, you
need to access whatever you’re managing through programmer-style interfaces called
Application Programmer Interfaces (APIs). APIs are almost universally binary (especially
on Windows), and binary interfaces are not command-line friendly.

Another factor is that, as Windows acquired more and more subsystems and fea-
tures, the number of issues you had to think about when managing a system increased
dramatically. To deal with this increase in complexity, the manageable elements were
factored into structured data objects. This collection of management objects is known
internally at Microsoft as the Windows management surface. While this factoring
addressed overall complexity and worked well for graphical interfaces, it made it much
harder to work with using a traditional text-based shell environment.

Finally, as the power of the PC increased, Windows began to move off the desktop
and into the corporate data center. In the corporate data center, you have a large
number of servers to manage, and the graphical point-and-click management
approach that worked well for one machine doesn’t scale. All these elements com-
bined to make it clear that Microsoft could no longer ignore the command line.

1.1.3 The last mile problem

Why do we care about command-line management and automation? Because it helps
to solve the Information Technology professional’s version of the last mile problem.
The last mile problem is a classical problem that comes from the telecommunications
industry. It goes like this: the telecom industry can effectively amortize its infrastruc-
ture costs across all its customers until it gets to the last mile where the service is
finally run to an individual location. Installing service across this last mile can’t be
amortized because it serves only a single location. Also, what’s involved in servicing
any particular location can vary significantly. Servicing a rural farmhouse is different
and significantly more expensive than running service to a house on a city street.
WHAT IS POWERSHELL? 7

In the Information Technology (IT) industry, the last mile problem is figuring
out how to manage each IT installation effectively and economically. Even a small
IT environment has a wide variety of equipment and applications. One approach to
solving this is through consulting: IT vendors provide consultants who build custom
last-mile solutions for each end-user. This, of course, has problems with recurring
costs and scalability (it’s great for the vendor, though). A better solution for end-
users is to empower them to solve their own last mile problems. We do this by pro-
viding a toolkit to enable end-users to build their own custom solutions. This toolkit
can’t merely be the same tools used to build the overall infrastructure as the level of
detail required is too great. Instead, you need a set of tools with a higher level of
abstraction. This is where PowerShell comes in—its higher-level abstractions allow
you to connect the various bits of your IT environment together more quickly and
with less effort.

Now that we understand the environmental forces that led to the creation of Pow-
erShell, the need for command-line automation in a distributed object-based operat-
ing environment, let’s look at the form the solution took.

1.2 SOUL OF A NEW LANGUAGE

The title of this section was adapted from Tracey Kidder’s Soul of a New Machine, one
of the best non-technical technical books ever written. Kidder's book described how
Data General developed a new 32-bit minicomputer, the Eclipse, in a single year. At
that time, 32-bit minicomputers were not just new computers; they represented a
whole new class of computers. It was a bold, ambitious project; many considered it
crazy. Likewise, the PowerShell project is not just about creating a new shell language.
We are developing a new class of object-based shell languages. And we’ve been told
more than a few times that we were crazy.

In this section, we’re going to cover some of the technological forces that shaped
the development of PowerShell. A unique set of customer requirements in tandem
with the arrival of the new .NET wave of tools at Microsoft led to this revolution in
shell languages.

1.2.1 Learning from history

In section 1.1.2, we described why Microsoft needed to improve the command line.
Now let’s talk about how we decided to improve it. In particular, let’s talk about why
we created a new language. This is certainly one of the most common questions peo-
ple ask about PowerShell (right after “What, are you guys nuts?”). People ask “why
not just use one of the UNIX shells?” or “why not extend the existing Windows com-
mand line?”

In practice, we did start with an existing shell language. We began with the shell
grammar for the POSIX standard shell defined in IEEE Specification 1003.2. The
POSIX shell is a mature command-line environment available on a huge variety of
platforms. including Microsoft Windows. It’s based on a subset of the UNIX Korn
8 CHAPTER 1 WELCOME TO POWERSHELL

shell, which is itself a superset of the original Bourne shell. Starting with the POSIX
shell gave us a well-specified and stable base. Then we had to consider how to accom-
modate the differences that properly supporting the Windows environment would
entail. We wanted to have a shell optimized for the Windows environment in the
same way that the UNIX shells are optimized for this UNIX environment.

To begin with, traditional shells deal only with strings. Even numeric operations
work by turning a string into a number, performing the operation, and then turning
it back into a string. Given that a core goal for PowerShell was to preserve the struc-
ture of the Windows data types, we couldn’t simply use the POSIX shell language as
is. This factor impacted the language design more than any other. Next, we wanted
to support a more conventional scripting experience where, for example, expressions
could be used as you would normally use them in a scripting language such as
VBScript, Perl, or Python. With a more natural expression syntax, it would be easier
to work with the Windows management objects. Now we just had to decide how to
make those objects available to the shell.

1.2.2 Leveraging .NET

One of the biggest challenges in developing any computer language is deciding how
to represent data in that language. For PowerShell, the key decision was to leverage
the .NET object model. .NET is a unifying object representation that is being used
across all of the groups at Microsoft. It is a hugely ambitious project that has taken
years to come to fruition. By having this common data model, all the components in
Windows can share and understand each other’s data.

One of .NET’s most interesting features for PowerShell is that the .NET object
model is self-describing. By this, we mean that the object itself contains the informa-
tion that describes the object’s structure. This is important for an interactive environ-
ment, as you need to be able to look at an object and see what you can do with it. For
example, if PowerShell receives an event object from the system event log, the user
can simply inspect the object to see that it has a data stamp indicating when the event
was generated.

Traditional text-based shells facilitate inspection because everything is text. Text is
great—what you see is what you get. Unfortunately, what you see is all you get. You
can’t pull off many interesting tricks with text until you turn it into something else.
For example, if you want to find out the total size of a set of files, you can get a direc-
tory listing, which looks something like the following:

02/26/2004 10:58 PM 45,452 Q810833.log
02/26/2004 10:59 PM 47,808 Q811493.log
02/26/2004 10:59 PM 48,256 Q811630.log
02/26/2004 11:00 PM 50,681 Q814033.log

You can see where the file size is in this text, but it isn’t useful as is. You have to extract
the sequence of characters starting at column 32 (or is it 33?) until column 39,
remove the comma, and then turn those characters into numbers. Even removing the
SOUL OF A NEW LANGUAGE 9

comma might be tricky, because the thousands separator can change depending on
the current cultural settings on the computer. In other words, it may not be a
comma—it may be a period. Or it may not be present at all.

It would be easier if you could just ask for the size of the files as a number in the
first place. This is what .NET brings to PowerShell: self-describing data that can be
easily inspected and manipulated without having to convert it to text until you really
need to.

Choosing to use the .NET object model also brings an additional benefit, in that it
allows PowerShell to directly use the extensive libraries that are part of the .NET
framework. This brings to PowerShell a breadth of coverage rarely found in a new
language. Here’s a simple example that shows the kinds of things .NET brings to the
environment. Say we want to find out what day of the week December 13, 1974 was.
We can do this in PowerShell as follows:

PS (1) > (get-date "12/13/1974").DayOfWeek
Friday

In this example, the get-date command returns a .NET DateTime object, which
has a property that will calculate the day of the week corresponding to that date. The
PowerShell team didn’t need to create a library of date and time manipulation rou-
tines for PowerShell—we got them for free by building on top of .NET. And the same
DateTime objects are used throughout the system. For example, say we want to find
out which of two files is newer. In a text-based shell, we’d have to get a string that
contains the time each file was updated, covert those strings into numbers somehow,
and then compare them. In PowerShell, we can simply do:

PS (6) > (dir data.txt).lastwritetime -gt
>> (dir hello.ps1).lastwritetime
>>
True

We use the dir command to get the file information objects and then simply com-
pare the last write time of each file. No string parsing is needed.

Now that we’re all sold on the wonders of objects and .NET (I’m expecting my
check from the Microsoft marketing folks real soon), let’s make sure we’re all talking
about the same thing when we use words like object, member, method, and instance.
The next section discusses the basics of object-oriented programming.

1.3 BRUSHING UP ON OBJECTS

Since the PowerShell environment uses objects in almost everything it does, it’s worth
running through a quick refresher on object-oriented programming. If you’re com-
fortable with this material, feel free to skip most of this section, but do please read the
section on objects and PowerShell.
10 CHAPTER 1 WELCOME TO POWERSHELL

There is no shortage of “learned debate” (also known as bitter feuding) about
what objects are and what object-oriented programming is all about. For our pur-
poses, we’ll use the simplest definition. An object is a package that contains both data
and the information on how to use that data. Take a light bulb object as a simple
example. This object would contain data describing its state—whether it’s off or on.
It would also contain the mechanisms or methods needed to change the on/off state.
Non-object-oriented approaches to programming typically put the data in one place,
perhaps a table of numbers where 0 is off and 1 is on, and then provide a separate
library of routines to change this state. To change its state, the programmer would
have to tell these routines where the value representing a particular light bulb was.
This could be complicated and is certainly error prone. With objects, because both
the data and the methods are packaged as a whole, the user can work with objects in
a more direct and therefore simpler manner, allowing many errors to be avoided.

1.3.1 Reviewing object-oriented programming

That’s the basics of what objects are. Now what is object-oriented programming? Well,
it deals mainly with how you build objects. Where do the data elements come from?
Where do the behaviors come from? Most object systems determine the object’s capa-
bilities through its type. In the light bulb example, the type of the object is (surprise)
LightBulb. The type of the object determines what properties the object has (for
example, IsOn) and what methods it has (for example, TurnOn and TurnOff).

Essentially, an object’s type is the blueprint or pattern for what an object looks like
and how you use it. The type LightBulb would say that that it has one data ele-
ment—IsOn—and two methods—TurnOn() and TurnOff(). Types are frequently
further divided into two subsets:

• Types that have an actual implementation of TurnOn() and TurnOff().
These are typically called classes.

• Types that only describe what the members of the type should look like but not
how they work. These are called interfaces.

The pattern IsOn/TurnOn()/TurnOff() could be an interface implemented by a
variety of classes such as LightBulb, KitchenSinkTap, or Television. All these
objects have the same basic pattern for being turned on and off. From a programmer’s
perspective, if they all have the same interface (that is, the same mechanism for being
turned on and off), once you know how to turn one of these objects on or off, you
can use any type of object that has that interface.

Types are typically arranged in hierarchies with the idea that they should reflect
logical taxonomies of objects. This taxonomy is made up of classes and subclasses. An
example taxonomy is shown in figure 1.2.

In this taxonomy, Book is the parent class, Fiction and Non-fiction are
subclasses of Book, and so on. While taxonomies organize data effectively, designing a
good taxonomy is hard. Frequently, the best arrangement is not immediately
BRUSHING UP ON OBJECTS 11

obvious. In figure 1.2, it might be better to organize by subject matter first, instead of
the Novel/Short-story Collection grouping. In the scientific world, people
spend entire careers categorizing items. Since it’s hard to categorize well, people also
arrange instances of objects into collections by containment instead of by type. A
library contains books, but it isn’t itself a book. A library also contains other things
that aren’t books, such as chairs and tables. If at some point you decide to re-
categorize all of the books in a library, it doesn’t affect what building people visit to
get a book. It only changes how you find a book once you reach that building. On
the other hand, if the library moves to a new location, you have to learn where it is.
Once inside the building, however, your method for looking up books hasn’t
changed. This is usually called a has-a relationship—a library has-a bunch of books.
Now let’s see how these concepts are used in the PowerShell environment.

1.3.2 Objects in PowerShell

We’ve said that PowerShell is an object-based shell as opposed to an object-oriented
language. What do we mean by object-based? In object-based scripting, you typically
use objects somebody else has already defined for you. While it’s possible to build
your own objects in PowerShell, it isn’t something that you need to worry about—at
least not for most basic PowerShell tasks.

Returning to the LightBulb example, PowerShell would probably use the
LightBulb class like this:

$lb = get-lightbulb –room bedroom
$lb.TurnOff()

Don’t worry about the details of the syntax for now—we’ll cover that later. The key
point is that you usually get an object “foo” by saying:

get-foo –option1 –option2 bar

Figure 1.2 This diagram shows how books can be organized in a

hierarchy of classes, just as object types can be organized into classes.
12 CHAPTER 1 WELCOME TO POWERSHELL

rather than saying something like:

new foo()

as you would in an object-oriented language.
PowerShell commands, called cmdlets, use verb-noun pairs. The get-* verb is used

universally in the system to get at objects. Note that we didn’t have to worry about
whether LightBulb is a class or an interface, or care about where in the object hier-
archy it comes from. You can get all of the information about the member properties
of an object though the get-member command (see the pattern?), which will tell
you all about an object’s properties.

But enough talk! By far the best way to understand PowerShell is to use it. In the
next section, we’ll get you up and going with PowerShell, and quickly tour through
the basics of the environment.

1.4 DUDE! WHERE’S MY CODE?

In this section, we’ll look at the things you need to know to get going with Power-
Shell as quickly as possible. This is a brief introduction intended to provide a taste of
what PowerShell can do and how it works. We begin with how to download and
install PowerShell and how to start the interpreter once it’s installed. Then we’ll cover
the basic format of commands, command-line editing, and how to use command
completion with the Tab key to speed up command entry. Once you’re up and run-
ning, we’ll look at what you can do with PowerShell. We’ll start with basic expressions
and then move on to more complex operations.

NOTE The PowerShell documentation package also includes a short Getting
Started guide that will include up-to-date installation information and in-
structions. You may want to take a look at this as well.

1.4.1 Installing and starting PowerShell

First things first—you’ll almost certainly have to download and install the PowerShell
package on your computer. Go to the PowerShell page on the Microsoft website:

http://microsoft.com/powershell

This page should contain a link that will take you to the latest installer and any docu-
mentation packages or other materials available. Alternatively, you can go to
Microsoft Update and search for the installer there. Once you’ve located the installer,
follow the instructions to install the package. After you have it installed, to start an
interactive PowerShell session go to:

Start -> Programs -> Windows PowerShell

When it’s started, you’ll see a screen like that shown in figure 1.3:
DUDE! WHERE’S MY CODE? 13

Now type the first command most people type: “dir”. This produces a listing of the
files on your system, as shown in figure 1.4.

As you would expect, the dir command prints a listing of the current directory to
standard output.

NOTE Let’s stop for a second and talk about the conventions we’re going to use in
examples. Since PowerShell is an interactive environment, we’ll show a lot
of example commands as the user would type them, followed by the re-
sponses the system generates. Before the command text, there will be a
prompt string that looks like “PS (2) > ”. Following the prompt, the actual
command will be displayed in bold font. PowerShell’s responses will follow
on the next few lines. Since PowerShell doesn’t display anything in front of
the output lines, you can distinguish output from commands by looking
for the prompt string. These conventions are illustrated in figure 1.5.

Figure 1.3 When you start an interactive PowerShell session, the first

thing you see is the PowerShell logo and then the prompt. As soon as

you see the prompt, you can begin entering commands.

Figure 1.4 At the prompt, type “dir” and press the Enter key. PowerShell will

then execute the dir command and display a list of files in the current directory.
14 CHAPTER 1 WELCOME TO POWERSHELL

On to the examples. Instead of simply displaying the directory listing, let’s save it into
a file using output redirection. In the following example, we redirect the output into
the file c:\foo.txt and then use the type command to display what was saved:

PS (2) > dir c:\config.sys > c:\foo.txt
PS (3) > type c:\foo.txt

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 11/17/2004 3:32 AM 0 config.sys
PS (4) >

As you can see, commands work more or less as you’d expect if you’ve used other
shells. Let’s go over some other things that should be familiar to you.

1.4.2 Command editing

Command-line editing works the same way for PowerShell as it does for cmd.exe.
The available editing features and keystrokes are listed in table 1.1.

PS (1) > 1+2+3+4
10
PS (2) >

User enters
“1+2+3+4”

And Then
Displays Next

Prompt

PowerShell
Outputs the
Result 10

First Prompt

Figure 1.5 This diagram illustrates the

conventions we’re using for showing

examples in this book. The text that the

user types is shown in bold. Prompts

and other output from the interpreter

are shown in normal weight text.

Table 1.1 Command editing features

Keyboard

sequence
Editing operation

Left/Right Arrows Move the editing cursor left and right through the current command line.

Ctrl-Left Arrow,
Ctrl-Right Arrow

Holding the control (CTRL) key down while pressing the left and right arrow
keys will move the editing cursor through the current command line one
word at a time, instead of one character at a time.

Home Moves the editing cursor to the beginning of the current command line.

End Moves the editing cursor to the end of the current command line.

Up/Down Arrows Moves up and down through the command history.

Insert Key Toggles between character insert and character overwrite modes.

Delete Key Deletes the character under the cursor.

Backspace Key Deletes the character behind the cursor.

continued on next page
DUDE! WHERE’S MY CODE? 15

These key sequences let you create and edit commands effectively at the command
line. In fact, they aren’t really part of PowerShell at all. These command-line editing
features are part of the Windows console subsystem, so they are the same across all
console applications. There is one editing feature, however, that is significantly differ-
ent for PowerShell. This is command completion, also call tab-completion. While
cmd.exe does have tab-completion, PowerShell’s implementation is significantly
more powerful. We’ll describe this feature next.

1.4.3 Command completion

An important feature at the command line is tab-completion. This allows you to par-
tially enter a command, then hit the Tab key and have PowerShell try to fill in the rest
of the command. By default, PowerShell will do tab completion against the file sys-
tem, so if you type a partial file name and then hit Tab, the system matches what
you’ve typed against the files in the current directory and returns the first matching
file name. Hitting Tab again takes you to the next match, and so on. PowerShell also
supplies the powerful capability of tab-completion on wild cards (see chapter 4 for
information on PowerShell wild cards). This means that you can type:

PS (1) > cd c:\pro*files<tab>

and the command is expanded to:

PS (2) > cd 'C:\Program Files'

PowerShell will also do tab-completion on partial cmdlet names. If you enter a
cmdlet name up to the dash and then hit the Tab key, the system will step through
the matching cmdlet names.

So far, this isn’t much more interesting than what cmd.exe provide. What is sig-
nificantly different is that PowerShell also does completion on parameter names. If
you enter a command followed by a partial parameter name and hit Tab, the system
will step through all of the possible parameters for that command.

PowerShell also does tab-completion on variables. If you type a partial variable
name and then hit the Tab key, PowerShell will complete the name of the variable.

And finally, PowerShell does completion on properties in variables. If you’ve used
the Microsoft Visual Studio development environment, you’ve probably seen the
Intellisense feature. Property completion is kind of a limited Intellisense capability at
the command line. If you type something like:

F7 Pops up command history in a window on the console. Use the up and
down arrows to select a command, then Enter to execute that command.

Tab Does command line completion. (See the next section for details.)

Table 1.1 Command editing features (continued)

Keyboard

sequence
Editing operation
16 CHAPTER 1 WELCOME TO POWERSHELL

PS (1) > $a="abcde"
PS (2) > $a.len<tab>

The system expands the property name to:

PS (2) > $a.Length

Again, the first Tab returns the first matching property or method. If the match is a
method, an open parenthesis is displayed:

PS (3) > $a.sub<tab>

which produces:

PS (3) > $a.Substring(

Note that the system corrects the capitalization for the method or property name to
match how it was actually defined. This doesn’t really impact how things work. Pow-
erShell is case-insensitive by default whenever it has to match against something.
(There are operators that allow you to do case-sensitive matching, which are discussed
in chapter 3).

The PowerShell tab completion mechanism is user extendable. While the
path completion mechanism is built into the executable, features such as
parameter and property completion are implemented through a shell func-
tion that users can examine and modify. The name of this function is
TabExpansion. Chapter 7 describes how to write and manipulate Power-
Shell functions.

1.4.4 Evaluating basic expressions

In addition to running commands, PowerShell can also evaluate expressions. In effect,
it operates as a kind of calculator. Let’s evaluate a simple expression:

PS (4) > 2+2
4

Notice that as soon as you typed the expression, the result was calculated and
displayed. It wasn’t necessary to use any kind of print statement to display the
expression. It is important to remember that whenever an expression is evaluated, the
result of the expression is output, not discarded. We’ll explore the implications of this
in later sections.

Here are few more examples of PowerShell expressions examples:

PS (5) > (2+2)*3
12
PS (6) > (2+2)*6/2
12
PS (7) > 22/7
3.14285714285714

AUTHOR’S
NOTE
DUDE! WHERE’S MY CODE? 17

You can see from these examples that PowerShell supports most of the basic arith-
metic operations you’d expect, including floating point.

NOTE PowerShell supports single and double precision floating point, as well as
the .NET decimal type. See chapter 3 for more details.

Since we’ve already shown how to save the output of a command into a file using the
redirection operator, let’s do the same thing with expressions:

PS (8) > (2+2)*3/7
1.71428571428571
PS (9) > (2+2)*3/7 > c:\foo.txt
PS (10) > type c:\foo.txt
1.71428571428571

Saving expressions into files is useful; saving them in variables is more useful:

PS (11) > $n = (2+2)*3
PS (12) > $n
12
PS (13) > $n / 7
1.71428571428571

Variables can also be used to store the output of commands:

PS (14) > $files = dir
PS (15) > $files[1]

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Document
 s and Settings\brucepay

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 4/25/2006 10:32 PM Desktop

In this example, we extracted the second element of the collection of file information
objects returned by the dir command.

Note that collections in PowerShell start at 0, not at 1. This is a character-
istic we’ve inherited from the .NET Common Language Runtime specifi-
cation. This is why $files[1] is actually extracting the second element,
not the first.

1.4.5 Processing data

As we’ve seen in the preceding sections, we can run commands to get information
and then store it in files and variables. Now let’s do some processing on that data.
First we’ll look at how to sort objects and how to extract properties from those
objects. Then we’ll look at using the PowerShell flow control statements to write
scripts that use conditionals and loops to do more sophisticated processing.

AUTHOR’S
NOTE
18 CHAPTER 1 WELCOME TO POWERSHELL

Sorting objects

First let’s sort a list of files. Here’s the initial list, which by default is sorted by name.

PS (16) > cd c:\files
PS (17) > dir

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\files

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 4/25/2006 10:55 PM 98 a.txt
-a--- 4/25/2006 10:51 PM 42 b.txt
-a--- 4/25/2006 10:56 PM 102 c.txt
-a--- 4/25/2006 10:54 PM 66 d.txt

The output of this shows the basic properties on the file system objects sorted by the
name of the file. Now, let’s run it through the sort utility:

PS (18) > dir | sort

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\files

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 4/25/2006 10:55 PM 98 a.txt
-a--- 4/25/2006 10:51 PM 42 b.txt
-a--- 4/25/2006 10:56 PM 102 c.txt
-a--- 4/25/2006 10:54 PM 66 d.txt

Granted, it’s not very interesting. Sorting an already sorted list by the same property
yields you the same result. Let’s do something a bit more interesting. Let’s sort by
name in descending order:

PS (19) > dir | sort -descending

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\files

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 4/25/2006 10:54 PM 66 d.txt
-a--- 4/25/2006 10:56 PM 102 c.txt
-a--- 4/25/2006 10:51 PM 42 b.txt
-a--- 4/25/2006 10:55 PM 98 a.txt

So there you have it—files sorted by name in reverse order. Now let’s sort by some-
thing other than the name of the file. Let’s sort by file length. You may remember
from an earlier section how hard it would be to sort by file length if the output were
just text.
DUDE! WHERE’S MY CODE? 19

In fact, on a UNIX system, this sort command looks like:

ls -l | sort -n -k 5

which, while pithy, is pretty opaque. Here’s what it’s doing. The -n option
tells the sort function that you want to do a numeric sort. -k tells you
which field you want to sort on. (The sort utility considers space-separated
bits of text to be fields.) In the output of the ls -l command, the field
containing the length of the file is at offset 5, as shown in the following:

-rw-r--r-- 1 brucepay brucepay 5754 Feb 19 2005 index.html
-rw-r--r-- 1 brucepay brucepay 204 Aug 19 12:50 page1.htm

We need to set things up this way because ls produces unstructured
strings. We have to tell sort how to parse those strings before it can sort
them.

In PowerShell, when we use the Sort-Object cmdlet, we don’t have to tell it to sort
numerically—it already knows the type of the field, and we can specify the sort key
by property name instead of a numeric field offset.

PS (20) > dir | sort -property length

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\files

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 4/25/2006 10:51 PM 42 b.txt
-a--- 4/25/2006 10:54 PM 66 d.txt
-a--- 4/25/2006 10:55 PM 98 a.txt
-a--- 4/25/2006 10:56 PM 102 c.txt

In this example, we’re working with the output as objects; that is, things having a set
of distinct characteristics accessible by name.

Selecting properties from an object

In the meantime, let’s introduce a new cmdlet—Select-Object. This cmdlet
allows you to either select some of the objects piped into it or select some properties
of each object piped into it.

Say we want to get the largest file in a directory and put it into a variable:

PS (21) > $a = dir | sort -property length -descending |
>> select-object -first 1
>>
PS (22) > $a

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\files

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 4/25/2006 10:56 PM 102 c.txt

AUTHOR’S
NOTE
20 CHAPTER 1 WELCOME TO POWERSHELL

From this we can see that the largest file is c.txt.

NOTE Note the secondary prompt “>>” in the previous example. The first line of
the command ended in a pipe symbol. The PowerShell interpreter noticed
this, saw that the command was incomplete, and prompted for additional
text to complete the command. Once the command is complete, you type
a second blank line to send the command to the interpreter.

Now say we want only the name of the directory containing the file and not all of the
other properties of the object. We can also do this with Select-Object. As with
the sort cmdlet, Select-Object also takes a -property parameter (you’ll see
this frequently in the PowerShell environment—commands are consistent in their
use of parameters).

PS (23) > $a = dir | sort -property length -descending |
>> select-object -first 1 -property directory
>>
PS (24) > $a

Directory

C:\files

We now have an object with a single property.

Processing with the Foreach-Object cmdlet

The final simplification is to get just the value itself. Let’s introduce a new cmdlet that
lets you do arbitrary processing on each object in a pipeline. The Foreach-Object
cmdlet executes a block of statements for each object in the pipeline.

PS (25) > $a = dir | sort -property length -descending |

>> select-object -first 1 |
>> foreach-object { $_.DirectoryName }
>>
PS (26) > $a
C:\files

This shows that we can get an arbitrary property out of an object, and then do arbi-
trary processing on that information using the Foreach-Object command. Com-
bining those features, here’s an example that adds up the lengths of all of the objects
in a directory.

PS (27) > $total = 0
PS (28) > dir | foreach-object {$total += $_.length }
PS (29) > $total
308

In this example, we initialize the variable $total to 0, then add to it the length of
each file returned by the dir command and finally display the total.
DUDE! WHERE’S MY CODE? 21

Processing other kinds of data

One of the great strengths of the PowerShell approach is that once you learn a pattern
for solving a problem, you can use this same pattern over and over again. For exam-
ple, say we want to find the largest three files in a directory. The command line might
look like this:

PS (1) > dir | sort -desc length | select -first 3

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\files

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 4/25/2006 10:56 PM 102 c.txt
-a--- 4/25/2006 10:55 PM 98 a.txt
-a--- 4/25/2006 10:54 PM 66 d.txt

We ran the dir command to get the list of file information objects, sorted them in
descending order by length, and then selected the first three results to get the three
largest files.

Now let’s tackle a different problem. We want to find the three processes on the
system with the largest working set size. Here’s what this command line looks like:

PS (2) > get-process | sort -desc ws | select -first 3

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 1294 43 51096 81776 367 11.48 3156 OUTLOOK
 893 25 55260 73340 196 79.33 5124 iexplore
 2092 64 42676 54080 214 187.23 988 svchost

This time we run Get-Process to get the data and sort on the working set instead
of the file size. Otherwise the pattern is identical to the previous example. This com-
mand pattern can be applied over and over again. For example, to get the three largest
mailboxes on an Exchange mailserver, the command might look like:

get-mailboxstatistics | sort –desc TotalItemSize | select –first 3

Again the pattern is repeated except for the Get-MailboxStatistics command
and the property to filter on.

Even when we don’t have a specific command for the data we’re looking for and
have to use other facilities such as WMI (see chapter 12 for more information on
WMI), we can continue to apply the pattern. Say we want to find the three drives on
the system that have the most free space. To do this we need to get some data from
WMI. Not surprisingly, the command for this is Get-WmiObject. Here’s how we’d
use this command:

PS (4) > get-wmiobject win32_logicaldisk |
>> sort -desc freespace | select -first 3 |
>> format-table -autosize deviceid, freespace
>>
22 CHAPTER 1 WELCOME TO POWERSHELL

deviceid freespace
-------- ---------
C: 97778954240
T: 31173663232
D: 932118528

Once again, the pattern is almost identical. The Get-WmiObject command returns
a set of objects from WMI. We pipe these objects into sort and sort on the
freespace property, then use Select-Object to extract the first three.

Because of this ability to apply a command pattern over and over, most
of the examples in this book are deliberately generic. The intent is to
highlight the pattern of the solution rather than show a specific example.
Once you understand the basic patterns, you can effectively adapt them
to solve a multitude of other problems.

Flow control statement

Pipelines are great, but sometimes you need more control over the flow of your script.
PowerShell has the usual script flow control statements, such as while loops and if
statements:

PS (1) > $i=0
PS (2) > while ($i++ -lt 10) { if ($i % 2) {"$i is odd"}}
1 is odd
3 is odd
5 is odd
7 is odd
9 is odd
PS (3) >

Here we’re using the while loop to count from 0 through 9. In the body of the
while loop, we have an if statement that tests to see whether the current number is
odd, and then writes out a message if it is. There are a number of additional flow con-
trol statements. The complete set of these features is covered in chapter 6.

This is the end of our “Cook’s tour” of PowerShell, and we’ve only breezed over
the features and capabilities of the environment. In the subsequent chapters, we’ll
cover each of the elements discussed here in detail and a whole lot more.

1.5 SUMMARY

This chapter covered what PowerShell is and, just as important, why it is. We also
took a whirlwind tour through some simple examples of using PowerShell interac-
tively. Here are the key points that were covered:

• PowerShell is the new command-line and scripting environment from
Microsoft Corporation.

• The Microsoft Windows management model is primarily object-based, which
required us to take a novel approach to command-line scripting.

AUTHOR’S
NOTE
SUMMARY 23

• PowerShell uses the .NET object model as the base for its type system.

• We’re not crazy. Really! We’ve written papers and everything!

In the next chapter, we’ll look at each of the language features we showed you in
much more detail.
24 CHAPTER 1 WELCOME TO POWERSHELL

C H A P T E R 2

The basics

2.1 Command concepts and terminology 27
2.2 Parsing and PowerShell 37
2.3 Pipelines and commands 45
2.4 Formatting and output 48
2.5 Summary 54
“Begin at the beginning,” the king said “and then go on till you come
to the end, then stop.”

 —Lewis Carroll, Alice in Wonderland

Vizzini: Inconceivable!
Inigo: You keep on using that word. I do not think it means what you
think it means.

 —William Goldman, The Princess Bride

Having read chapter 1, you have the history and rationale of PowerShell under your
belt, and you’re ready to move on to the details of the PowerShell language and its envi-
ronment. This chapter covers language details that are specific to PowerShell and how
the PowerShell interpreter parses the commands you type. It also outlines the anatomy
of the command line itself. The chapter presents many examples that are not com-
pletely explained. If you don’t understand everything when you read the examples,
25

don’t worry—we’ll revisit the material in later. In this chapter, we just want to cover the
major concepts, and then focus on the details in subsequent chapters.

Before digging into PowerShell concepts and terminology, let’s capture some first
impressions of the language: What does the PowerShell language look like? Bird-
watchers have to learn how to distinguish hundreds of different species of fast-mov-
ing little brown birds (or LBBs as they’re known). To understand how they do this, I
consulted with my wife (the only bird I can identify is a chicken, preferably stuffed
and roasted). Birdwatchers use something called the G.I.S.S. principle. This stands for
General Impression, Size, and Shape of the bird. It’s the set of characteristics that
allow you to determine what you saw from a brief or distant glance. Take a look at
the silhouettes shown in figure 2.1. The figure shows the relative sizes of four birds
and highlights the characteristic shape of each one. This is more than enough infor-
mation to recognize each bird.

What does this have to do with computers (other than to prove we aren’t the only
ones who make up strange acronyms)? In essence, the G.I.S.S. principle also works
well with programming languages. The overall G.I.S.S. of the PowerShell syntax is
that it’s like any of the C programming language descendents with specific differ-
ences. Variables are distinguished by a leading dollar (“$”) sign.

NOTE PowerShell uses the “at” symbol (“@”) in a few places, has $_ as a default
variable, and uses “&” as the function call operator. These elements lead
people to say that PowerShell looks like Perl. In fact, at one point, we were
using Perl as a root language, and these elements stem from the period. Lat-
er on, the syntax was changed to align more with C#, but we kept these el-
ements because they worked well. In Perl terminology, they contributed
significantly to the “whipupitude quotient” of the language.

In fact, the language that PowerShell looks most like is PHP. (This wasn’t deliberate.
It’s a case of parallel evolution—great minds thinking alike and all that.) But don’t let
this fool you; semantically, PowerShell and PHP are quite different.

The basics

Figure 2.1 This figure illustrates the G.I.S.S. principle—the general impression, size, and shape

of some common birds. Even without any detail, the basic shape and size is enough for most

people to identify these birds. This same principle can be applied when learning programming

languages; a sense of the overall shape of the language allows you to identify common coding

patterns in the language.
26 CHAPTER 2 THE BASICS

The core PowerShell language is based on the POSIX 1003.2 grammar for the Korn
shell. Originally, Perl idioms were appropriated for some of the more advanced con-
cepts such as hash tables. However, as the project progressed, it became clear that
aligning PowerShell syntax with C# was more appropriate. If nothing else, this would
facilitate migrating code between PowerShell and C#. The major value this brings is
that PowerShell code can be migrated to C# when necessary for performance
improvements, and C# examples can be easily converted to PowerShell. This second
point is important, since the more examples you have in a new language, the better
off you are.

2.1 COMMAND CONCEPTS AND TERMINOLOGY

As with any piece of new technology, PowerShell has its own terminology, although
we’ve tried to stick to existing terms as much as we could. Consequently, much of the
terminology used in PowerShell will be familiar if you’ve used other shells. However,
because PowerShell is a new kind of shell, there are a number of terms that are differ-
ent and a few new terms we just made up. In this section, we’ll go over the Power-
Shell-specific concepts and terminology for command types and command syntax.

2.1.1 Commands and cmdlets

Commands are the fundamental part of any shell language; they’re what you type to
get things done. As we saw in the previous chapter, a simple command looks like this:

command –parameter1 –parameter2 argument1 argument2

A more detailed illustration of the anatomy of this command is shown in figure 2.2.
This figure calls out all the individual elements of the command.

All commands are broken down into the command name, the parameters speci-
fied to the command, and the arguments to those parameters.

command -parameter1 -parameter2 arg1 arg2

Command
Name

Parameter with
Argument

Switch Parameter Positional
Argument

Figure 2.2 This figure shows the anatomy of a basic command. It begins with the name of the

command, followed by some number of parameters. These may be switch parameters that take

no arguments, regular parameters that do take arguments, or positional parameters where the

matching parameter is inferred by the argument’s position on the command line.
COMMAND CONCEPTS AND TERMINOLOGY 27

The distinction between “parameter” and “argument” may seem a bit
strange from a programmer’s perspective. However, if you’re used to lan-
guages such as Python or Visual Basic that allow for keyword parameters,
PowerShell parameters correspond to the keywords, and arguments corre-
spond to the values.

The first element in the command is the name of the command to be executed. The
PowerShell interpreter looks at this name and figures out what actually has to be
done. It must figure out not which command to run but which kind of command to
run. In PowerShell, there are currently four different categories of commands:
cmdlets, shell function commands, script commands, and native Windows com-
mands. (We’ll cover the different categories in detail in the following sections.) Fol-
lowing the command name comes zero or more parameters and/or arguments. A
parameter starts with a dash, followed by the name of the parameter. An argument,
on the other hand, is the value that will be associated with or bound to a specific
parameter. Let’s look at an example:

PS (1) > write-output -inputobject Hello
Hello

In this example, the command is Write-Output, the parameter is -inputobject,
and the argument is Hello.

What about the positional parameters mentioned in figure 2.1? When a com-
mand is created, the author of the command can provide information that allows
PowerShell to determine which parameter to bind an argument to, even if the param-
eter name itself is missing. For example, the Write-Output command has been
defined so that the first parameter is -inputobject. This lets us write

PS (2) > write-output Hello

Hello

instead of having to actually specify -inputobject. The piece of the PowerShell
interpreter that figures all of this out is called the parameter binder. In fact, the
parameter binder is smart—it doesn’t require that you specify the full name of a
parameter as long as you specify enough for it to uniquely distinguish what you
meant. This means that you can write any of the following:

PS (3) > write-output -input Hello
Hello
PS (4) > write-output -IN Hello
Hello
PS (5) > write-output -i Hello
Hello

and the parameter binder still does the right thing. (Notice that it doesn’t matter
whether you use uppercase or lowercase letters, either.) So what else does the parameter
binder do? It’s in charge of figuring out how to match the types of arguments to the types
of parameters. Remember that PowerShell is an object-based shell. Everything in
PowerShell has a type. For this to work seamlessly, PowerShell has to use a fairly complex

AUTHOR’S
NOTE
28 CHAPTER 2 THE BASICS

type conversion system to correctly put things together, a subject that is covered in chap-
ter 3. When you type a command at the command line, you’re really typing strings.
What happens if the command requires a different type of object? The parameter binder
uses the type converter to try to convert that string into the correct type for the param-
eter. Here’s a simple example. Let’s use the Get-Process command to get the process
with the process Id 0. Instead of passing it the number 0, we’ll put the argument in
quotes to force the argument to be a string. This means that the -id parameter, which
requires a number, will be passed a string instead.

PS (7) > get-process -id "0"

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 0 0 0 28 0 0 Idle

When trying to run this command, the parameter binder detects that -id needs a
number, not a string, so it takes the string “0” and tries to convert it into a number. If
this succeeds, the command continues as we see in the example. What happens if it
can’t be converted? Let’s try it:

PS (8) > get-process -id abc
Get-Process : Cannot bind parameter 'Id'. Cannot convert value "abc"
to type "System.Int32". Error: "Input string was not in a correct fo
rmat."
At line:1 char:16
+ get-process -id <<<< abc
PS (9) >

We get an error message explaining that the type conversion failed. We’ll discuss this
in more detail in chapter 3 when we talk about types. Since we’ve introduced the use
of quotation marks, let’s see one more example. What happens if the argument you
want to pass to the command starts with a dash? This is where the quotes come in.
Let’s use write-output to print out the string "-inputobject".

PS (1) > write-output -inputobject "-inputobject"
-inputobject

And it works as desired. Alternatively we could simply type:

PS (2) > write-output "-inputobject"
-inputobject

The quotes keep the parameter binder from treating the quoted string as a parameter.

Another, less frequently used way of doing this is by using the special end-
of-parameters parameter which is two hyphens back to back, as in “--”.
Everything after this sequence will be treated as an argument, even if it
looks like a parameter. For example, using “--” we could also write out the
string -inputobject without using quotes by doing:

PS (3) > write-output -- -inputobject
 -inputobject

AUTHOR’S
NOTE
COMMAND CONCEPTS AND TERMINOLOGY 29

The “--” sequence tells the parameter binder to treat everything after it as
an argument, even if it looks like a parameter. This is a convention adopt-
ed from the UNIX shells and is standardized in the POSIX Shell and Util-
ities specification.

The final element of the basic command is the switch parameter. These are parame-
ters that don’t require an argument. They’re usually either present or absent (so obvi-
ously they can’t be positional). The best example of this is the -recurse parameter
on the dir command. This switch tells the dir command to display files from a
specified directory as well as all of its subdirectories.

PS (1) > dir -recurse -filter c*d.exe c:\windows

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\windows\
 system32

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 8/10/2004 12:00 PM 102912 clipbrd.exe
-a--- 8/10/2004 12:00 PM 388608 cmd.exe

PS (2) >

As you can see, the -recurse switch takes no arguments.

While it’s almost always the case that switch parameters don’t take argu-
ments, it is possible to specify arguments to them. We’ll save when and why
you might do this for the chapter on scripts (shell functions and scripts are
the only time you need this particular feature, so we’ll keep you in suspense
for the time being).

Now that we’ve covered the basic anatomy of the command line, let’s go over the
types of commands that PowerShell supports.

2.1.2 Command categories

As we mentioned earlier, there are four categories of commands in PowerShell:
cmdlets, functions, scripts, and native Win32 executables.

The first category of command is a cmdlet (pronounced “command-let”). Cmdlet
is a term that’s specific to the PowerShell environment. A cmdlet is implemented by a
.NET class that derives from the Cmdlet base class in the PowerShell Software Devel-
opers Kit (SDK).

NOTE Building cmdlets is a developer task and requires the PowerShell SDK. This
SDK is freely available for download from Microsoft and includes extensive
documentation along with many code samples. However, since the goal of
Windows PowerShell in Action is to coach you to effectively use and script
in the PowerShell environment, we’re not going to do much more than
mention the SDK in this book.

AUTHOR’S
NOTE
30 CHAPTER 2 THE BASICS

This category of command is compiled into a DLL and loaded into the PowerShell
process when the shell starts up. Since the compiled code is loaded into the process,
it’s the most efficient category of command to execute.

Cmdlets always have names of the form Verb-Noun, where the verb specifies the
action and the noun specifies the object to operate on. In traditional shells, cmdlets
correspond most closely to what is usually called a built-in command. In PowerShell,
since anybody can add a cmdlet to the runtime, there isn’t any special class of built-in
commands. Cmdlets have the best support in version 1 of PowerShell: full online
help support, localization, and the best parameter binding support.

In listing 2.1, you can see the C# source code for a simple cmdlet. This cmdlet just
copies its input to its output. If -Parameter1 is specified then its argument will be
used as a prefix on the output string. This example was included to show the basic
structure of a cmdlet. There are a couple of important things to note in this listing.
The first is the way the parameters are declared using the [Parameter] attribute .
This information is used by the PowerShell runtime to automatically determine the
parameters for the cmdlet. The cmdlet author doesn’t have to write any code to do
parameter parsing; the runtime takes care of all of this work. Another thing to note is
the ValueFromPipeline=true notation . This indicates that this parameter may
be fulfilled by values coming from the pipeline. (We’ll discuss what this means when
we talk about pipelines later in this chapter.)

[Cmdlet("Write", "InputObject")]
public class MyWriteInputObjectCmdlet : Cmdlet
{
 [Parameter]
 public string Parameter1;

 [Parameter(Mandatory = true, ValueFromPipeline=true)]
 public string InputObject;

 protected override void ProcessRecord()
 {
 if (Parameter1 != null)
 WriteObject(Parameter1 + ":" + InputObject);
 else
 WriteObject(InputObject);
 }
}

The next type of command is a function. This is a named piece of PowerShell script
code that lives in memory while the interpreter is running, and is discarded on exit.
(See chapter 7 for more information on how you can load functions into your envi-
ronment.) Functions are made up of user-defined code that is parsed once when

B

C

Listing 2.1 C# source code for a simple cmdlet

How to mark a para-
meter in a cmdlet classB

Marking a parameter
that takes pipeline input C
COMMAND CONCEPTS AND TERMINOLOGY 31

defined. This parsed representation is preserved so it doesn’t have to be reparsed every
time it is used. Functions can have named parameters like cmdlets, but don’t have the
full parameter specification capabilities of cmdlets in the first version of PowerShell.
Notice, though, that the same basic structure is followed. The section in the script that
begins with the process keyword (line 4 of listing 2.2) corresponds to the Proc-
essRecord method shown in listing 2.1. This allows functions and cmdlets to have
the same streaming behavior. (See section 2.3.1 for more information on streaming.)

function Write-InputObject
{
 param($Parameter1)
 process {
 if ($Parameter1)
 {
 "$Parameter1:$_"
 } else {
 "$_"
 }
}

A script command is a piece of PowerShell code that lives in a file with a .ps1 exten-
sion. In version 1.0 of PowerShell, these script files are loaded and parsed every time
they are run, making them somewhat slower than functions to start (although once
started, they run at the same speed). In terms of parameter capabilities, shell function
commands and script commands are identical.

param($Parameter1)
process {
 if ($Parameter1)
 {
 "$Parameter1:$_"
 } else {
 "$_"
 }
}

The last type of command is called a native command. These are external programs
(typically executables) that can be executed by the operating system.

Listing 2.2 Source code for a simple shell function command

Listing 2.3 Source code for the simple shell script command “my-script.ps1”
32 CHAPTER 2 THE BASICS

Choosing names for things is always difficult, and the term native
command does sound a bit strange. We had originally called external
executables “legacy commands”, but the feedback was that “legacy” was
perceived as being a negative term. On the other hand, simply calling
them executables wasn’t really suitable, because this class of command also
includes cmd.exe batch files. In the end, we settled on “native command”
as being sufficiently distinctive.

Since running a native command means creating a whole new process for the com-
mand, native commands are the slowest of the command types. Also, native com-
mands do their own parameter processing and so don’t necessarily match the syntax
of the other types of commands.

Of course, since native commands cover anything that can be run on a Windows
computer, you get a wide variety of behaviors. One of the biggest issues is when Pow-
erShell waits for a command to finish but it just keeps on going. For example, if
you’re staring a text document, at the command line

PS (1) > .\foo.txt
PS (2) >

You get the prompt back more or less immediately, and your default text editor will
pop up (probably notepad.exe since that’s the default). The program to launch is
determined by the file associations that are defined as part of the Windows
environment.

NOTE In PowerShell, unlike in cmd.exe, you have to prefix a command with ./
or .\ if you want to run it out of the current directory. This is part of Pow-
erShell’s “Secure By Design” philosophy. This particular security feature
was adopted to prevent “Trojan horse” attacks where the user is lured into
a directory and then told to run an innocuous command such as note-
pad.exe. Instead of running the system notepad.exe, they end up running
a hostile program that the attacker has placed in that directory and named
notepad.exe. Chapter 13 covers the security features of the PowerShell en-
vironment in detail.

So what about when you specify the editor explicitly?

PS (2) > notepad foo.txt
PS (3) >

The same thing happens—the command returns immediately. But what about when
you run the command in the middle of a pipeline?

PS (3) > notepad foo.txt | sort
<exit notepad>
PS (4) >

AUTHOR’S
NOTE
COMMAND CONCEPTS AND TERMINOLOGY 33

Now PowerShell waits for the command to exit before giving you back the prompt.
This can be handy when you want to insert something such as a graphical form editor
in the middle of a script to do some processing.

Finally, let’s run the edit.com program. This is the old console-based full screen
editor that has come with Windows since about DOS 4.0. (Of course this also works
with other console editors—vi, emacs, and so forth.)

PS (6) > edit.com ./foo.txt
PS (7) >

As you would expect, the editor starts up, taking over the console window. You can
edit the file and then exit the editor and return to PowerShell, all as one would
expect. As you can see, the behavior of native commands depends on the type of
native command, as well as where it appears in the pipeline.

Now that we’ve covered all four PowerShell command types, let’s get back to
looking at the PowerShell syntax.

2.1.3 Aliases and elastic syntax

We haven’t really talked about aliases yet or how they’re used to achieve an elastic syn-
tax in PowerShell. Since this concept is important in the PowerShell environment, we
need to spend some time on it.

The cmdlet verb-noun syntax, while regular, is also verbose. Also you may have
noticed that in most of our examples we’re using commands such as dir and type.
The trick behind all this is aliases. The dir command is really Get-ChildItem and
the type command is really Get-Content. In fact, you can see this by using the
Get-Command command:

PS (1) > get-command dir

CommandType Name Definition
----------- ---- ----------
Alias dir Get-ChildItem

This tells you that the command is an alias for Get-ChildItem. To get information
about the Get-ChildItem command, you then do:

PS (2) > get-command get-childitem

CommandType Name Definition
----------- ---- ----------
Cmdlet Get-ChildItem Get-ChildItem [[-P...

which truncates the information at the width of the console window. To see all of the
information, pipe the output of get-command into fl:
34 CHAPTER 2 THE BASICS

PS (3) > get-command get-childitem | fl

Name : Get-ChildItem
CommandType : Cmdlet
Definition : Get-ChildItem [[-Path] <String[]>] [[-Filter]
 <String>] [-Include <String[]>] [-Exclude <S
 tring[]>] [-Recurse] [-Force] [-Name] [-Verbo
 se] [-Debug] [-ErrorAction <ActionPreference>
] [-ErrorVariable <String>] [-OutVariable <St

 ring>] [-OutBuffer <Int32>]
 Get-ChildItem [-LiteralPath] <String[]> [[-Fi
 lter] <String>] [-Include <String[]>] [-Exclu
 de <String[]>] [-Recurse] [-Force] [-Name] [-
 Verbose] [-Debug] [-ErrorAction <ActionPrefer
 ence>] [-ErrorVariable <String>] [-OutVariabl
 e <String>] [-OutBuffer <Int32>]

Path :
AssemblyInfo :
DLL : C:\WINDOWS\assembly\GAC_MSIL\Microsoft.PowerS
 hell.Commands.Management\1.0.0.0__31bf3856ad3
 64e35\Microsoft.PowerShell.Commands.Managemen
 t.dll
HelpFile : Microsoft.PowerShell.Commands.Management.dll-
 Help.xml
ParameterSets : {Items, LiteralItems}
ImplementingType : Microsoft.PowerShell.Commands.GetChildItemCom
 mand
Verb : Get
Noun : ChildItem

This shows you the full detailed information about this cmdlet. But wait—what’s the
fl command? Again we can use Get-Command to find out:

PS (4) > get-command fl

CommandType Name Definition
----------- ---- ----------
Alias fl Format-List

PowerShell comes with a large set of predefined aliases. There are two basic categories
of aliases—transitional aliases and convenience aliases. By transitional aliases, we
mean a set of aliases that map PowerShell commands to commands that people are
used to using in other shells, specifically cmd.exe and the UNIX shells. For the
cmd.exe user, PowerShell defines dir, type, copy, and so on. For the UNIX user,
PowerShell defines ls, cat, cp, and so forth. These aliases allow some basic level of
functionality for new users right away.

The other set of aliases are the convenience aliases. These aliases are derived from
the names of the cmdlets they map to. So Get-Command becomes gcm, Get-
ChildItem becomes gci, Invoke-Item becomes ii, and so on. For a list of the
defined aliases, just type Get-Alias at the command line. You can use the Set-
Alias command (whose alias is sal by the way) to define your own aliases.
COMMAND CONCEPTS AND TERMINOLOGY 35

Aliases in the first version of PowerShell are limited to aliasing the com-
mand name only. Unlike other systems such as ksh, bash, or zsh, Power-
Shell aliases cannot take parameters. The plan is to fix this in later
releases. In the first version, if you need to do something more sophisti-
cated than simple command name translations, you’ll have to use shell
functions or scripts.

This is all well and good, but what does it have to do with elastics? Glad you asked!
The idea is that PowerShell can be terse when needed and descriptive when appropri-
ate. The syntax is concise for simple cases and can be stretched like an elastic band for
larger problems. This is important in a language that is both a command-line tool
and a scripting language. The vast majority of “scripts” that you will write in Power-
Shell will be no more than a few lines long. In other words, they’ll be a string of com-
mands that you’ll type on the command line and then never use again. To be effective
in this environment, the syntax needs to be very concise. This is where aliases like fl
come in—they allow you to write concise command lines. When you’re scripting,
however, it is best to use the long name of the command. This is because sooner or
later, you’ll have to read the script you wrote (or—worse—someone else will). Would
you rather read something that looks like this?

gcm|?{$_.parametersets.Count -gt 3}|fl name

or this?

get-command |
where-object {$_.parametersets.count -gt 3} |
format-list name

I’d certainly rather read the latter. (As always—we’ll cover the details of these exam-
ples later on.)

PowerShell has two (or more) names for many of the same commands. Some
people find this unsettling—they prefer having only one way of doing
things. In fact this “only one way to do it” principle is also true for Power-
Shell, but with a significant variation: we want to have one best way of doing
something for each particular scenario or situation. Fundamentally this is
what computers are all about; at their simplest, everything is just a bunch
of bits. To be practical, you start from the simple bits and build out solutions
that are more appropriate for the problem you’re trying to solve. Along the
way, you create an intermediate-sized component that may be reused to solve
other problems. This is the approach that PowerShell uses: a series of com-
ponents at different levels of complexity intended to address a wide range
of problem classes. Not every problem is a nail, so having more tools than
a hammer is a good idea even if requires a bit more learning.

Now that we’ve covered the core concepts of how commands are processed, let’s step
back a bit and look at PowerShell language processing overall.

AUTHOR’S
NOTE

AUTHOR’S
NOTE
36 CHAPTER 2 THE BASICS

2.2 PARSING AND POWERSHELL

In this section, we’ll cover the details of how PowerShell scripts are parsed. Before the
PowerShell interpreter can execute the commands you type, it first has to parse the
command text and turn it into something the computer can execute. More formally,
parsing is the process of turning human-readable source code into a form the com-
puter understands. This is one area of computer science that actually deserves both of
these the words—computer and science. Science in this case means formal language
theory, which is a branch of mathematics. And since it’s mathematics, discussing it
usually requires a collection of Greek letters. We’ll keep things a bit simpler here.

A piece of script text is broken up into tokens by the tokenizer (or lexical analyzer
if you want to be more technical). A token is a particular type of symbol in the pro-
gramming language, for example a number, a keyword, or variable. Once the raw text
has been broken into a stream of tokens, these tokens are processed into structures in
the language through syntactic analysis. In syntactic analysis, the stream of tokens is
processed according to the grammatical rules of the language. In normal languages,
this process is straightforward—a token always has the same meaning. A sequence of
digits is always a number; an expression is always an expression, and so on. For exam-
ple the sequence

2+2

would always be an addition expression, and "Hello world" would always be a
constant string. Unfortunately, this isn’t the case in shell languages. Sometimes you
can’t tell what a token is except through its context. In the next section, we go into
more detail on why this is and how the PowerShell interpreter parses a script.

2.2.1 How PowerShell parses

For PowerShell to be successful as a shell, it cannot require that everything be quoted.
PowerShell would fail if it required that people to continually type

cd ".."

or

copy "foo.txt" "bar.txt"

On the other hand, people have a strong idea of how expressions should work:

2

is the number 2, not a string “2”. Consequently, PowerShell has some rather compli-
cated parsing rules. The next three sections will cover these rules. We’ll cover how
quoting is handled, the two major parsing modes, and the special rules around new-
lines and statement termination.
PARSING AND POWERSHELL 37

2.2.2 Quoting

Quoting is the mechanism used to turn a token that has special meaning to the Pow-
erShell interpreter into a simple string value. For example, the Write-Output
cmdlet has a parameter -InputObject. But what if we want to actually use the
string –InputObject as an argument, as mentioned earlier? To do this, we have to
quote it; that is, we surround it in single or double quotes. The result looks like this:

PS (2) > write-output '-inputobject'
-inputobject

What would happen if we hadn’t put the argument in quotes? Let’s find out:

PS (3) > write-output -inputobject
Write-Output : Missing an argument for parameter 'InputObject'.
Specify a parameter of type 'System.Management.Automation.PSObje
ct[]' and try again.
At line:1 char:25
+ write-output -inputobject <<<<
PS (4) >

As you can see, this produces an error message indicating that an argument to the
parameter -InputObject is required.

PowerShell supports several forms of quoting, each with somewhat different
meanings (or semantics). Putting single quotes around an entire sequence of charac-
ters causes them to be treated like a single string. This is how you deal with file paths
that have spaces in them. For example, if you want to cd into a directory whose path
contains spaces, you would do

PS (4) > cd 'c:\program files'
PS (5) > pwd
Path

C:\Program Files

What happens if we don’t use the quotes? Again, let’s try it and find out:

PS (6) > cd c:\program files
Set-Location : A parameter cannot be found that matches paramete
r name 'files'.
At line:1 char:3
+ cd <<<< c:\program files

When we don’t use the quotes, we receive an error complaining about an unexpected
parameter in the command because "c:\program" and "files" are treated as two
separate tokens.

NOTE Notice that the error message reports the name of the cmdlet, not the alias
that was used. This way you know what is actually being executed. The
“position message” on the other hand shows you the text that was entered
so you can see that an alias was used.
38 CHAPTER 2 THE BASICS

One problem with using matching quotes as we did in the previous examples is that
you have to remember to start the token with an opening quote. This raises an issue
when you want to quote a single character. You can use the backquote (`) character
to do this (the backquote is usually the upper leftmost key, below escape):

PS (6) > cd c:\program` files
PS (7) > pwd
Path

C:\Program Files

The backquote, or backtick, as it tends to be called, has other uses that we’ll explore
later in this section. Now let’s look at the other form of matching quote: double
quotes. Once again, here’s our favorite example.

PS (8) > cd "c:\program files"
PS (9) > pwd

Path

C:\Program Files

It looks pretty much like the example with single quotes, so what’s the difference? In
double quotes, variables are expanded. In other words, if the string contains a variable
reference starting with a “$”, it will be replaced by the string representation of the
value stored in the variable. Let’s look at an example of this. First assign the string
"files" to the variable $v:

PS (10) > $v = "files"

Now let’s reference that variable in a string with double quotes:

PS (11) > cd "c:\program $v"
PS (12) > pwd
Path

C:\Program Files

The cd succeeded and the current directory was set as we expected. So what happens
if we try it with single quotes? Here you go:

PS (13) > cd 'c:\program $v'
set-location : Cannot find path 'C:\program $v' because it does
not exist.
At line:1 char:3
+ cd <<<< 'c:\program $v'
PS (14) >

Since expansion is performed only in double quotes and not in single quotes, you get
an error because the unexpanded path doesn’t exist.

Take a look at the next example:
PARSING AND POWERSHELL 39

PS (14) > '$v is $v'
$v is $v
PS (15) > "$v is $v"
files is files

In the single-quoted case, $v is never expanded and in the double-quoted case, it’s
always expanded. But what if we really want to show what the value of $v is? To do
this, we need to have expansion in one place but not in the other. This is one of those
other uses we had for the backtick. It can be used to quote or escape the dollar sign in
a double-quoted string to suppress expansion. Let’s try it out:

PS (16) > write-output "`$v is $v"
$v is files

Here’s one final tweak to this example—if $v contained spaces, we’d want to make
clear what part of the output was the value. Since single-quotes can contain double-
quotes and double quotes can contain single quotes, this is straightforward:

PS (17) > write-output "`$v is '$v'"
$v is 'files'
PS (18) >

Now suppose we wanted to display the value of the $v on another line instead of in
quotes. Here is another situation where we can use the backtick as an escape charac-
ter. The sequence `n in a string, either single-quoted or double-quoted, will be
replaced by a newline character. We can write the example with value of $v on a sep-
arate line as follows:

PS (19) > "The value of `$v is:`n$v"
The value of $v is:
Files

Table 2.1 lists the special characters that can be generated using backtick (also called
escape) sequences.

Table 2.1 Backtick escape sequences

Escape Sequence Corresponding Special Character

`n Newline

`r Carriage return

`t Horizontal tab

`a Alert

`b Backspace

`' Single quote

`" Double quote

`0 Null

`` A single backtick
40 CHAPTER 2 THE BASICS

Note that escape sequence processing, like variable expansion, is only done in double-
quoted strings. In single quoted strings, what you see is what you get. This is particu-
larly important when writing a string to pass to a subsystem that does additional lev-
els of quote processing.

If you’ve used other languages such as C, C#, or Perl, you’ll be used to using back-
slash instead of backtick for escaping characters. Because PowerShell is a shell and has
to deal with Windows’s historical use of backslash as a path separator, it isn’t practical
to use backslash as the escape character. Too many applications expect backslash-sep-
arated paths, and that would have required every path to be typed with the slashes
doubled. Choosing a different escape character was a difficult decision that we had to
make, but there really wasn’t any choice. It’s one of the biggest cognitive bumps that
experienced shell and script language users run into with PowerShell, but in the end,
most people adapt without too much difficulty.

2.2.3 Expression mode and command mode parsing

As mentioned previously, because PowerShell is a shell, it has to deal with some pars-
ing issues not found in other languages. In practice, most shell languages are collec-
tions of mini-languages with many different parsing modes. For PowerShell, we
simplified this and trimmed the number of modes down to two: expression mode and
command mode.

In expression mode, the parsing is conventional: strings must be quoted, numbers
are always numbers, and so on. In command mode, numbers are treated as numbers
but all other arguments are treated as strings unless they start with a $, @, ', ", or (.
When an argument begins with one of these special characters, the rest of the argu-
ment is parsed as a value expression. (There is also special treatment for leading vari-
able references in a string, which we’ll discuss later on.) Table 2.2 shows some
examples that illustrate how items are parsed in each mode.

Table 2.2 Parsing mode examples

Example command line Parsing mode and explanation

2+2 Expression mode; results in 4

write-output 2+2 Command mode; results in “2+2”

$a=2+2 Expression mode; the variable $a is assigned the value 4

write-output (2+2) Expression mode; because of the parentheses, 2+2 is evaluated as an
expression producing 4. This result is then passed as an argument to
the write-output cmdlet.

write-output $a Expression mode; produces 4. This is actually ambiguous—evaluating it
in either mode produces the same result. The next example shows why
we default to expression mode in this case instead of command mode.

continued on next page
PARSING AND POWERSHELL 41

Notice that in the write-output (2+2) case, the open parenthesis causes the inter-
preter to enter a new level of interpretation where the parsing mode is once again
established by the first token. This means that the sequence 2+2 is actually parsed in
expression mode, not command mode, so the result of the expression (4) is emitted.
Also, the last example in the table illustrates the exception mentioned previously for a
leading variable reference in a string. A variable itself is treated as an expression, but a
variable followed by arbitrary text is treated as though the whole thing were in double
quotes. This is so you can write

cd $HOME/scripts

instead of

cd "$HOME/scripts"

As mentioned earlier, quoted and unquoted strings are recognized as different tokens
by the parser. This is why

my-cmdlet -parm arg

treats -parm as a parameter and

my-cmdlet "-parm" arg

treats "-parm" as an argument. There is an additional wrinkle in the parameter
binding. If an unquoted parameter like -notAparameter is not actually a parame-
ter on my-cmdlet, it will be treated as an argument. This lets you say

write-host -this -is -a parameter

without requiring quoting.
This finishes our coverage of the basics of parsing modes, quoting, and com-

mands. However, since commands can take arbitrary lists of arguments, knowing
when the statement ends is important. We’ll cover this in the next section.

write-output $a.Equals(4) Expression mode; $a.Equals(4) evaluates to true so write-output writes
the Boolean value true. This is why a variable is evaluated in expression
mode by default. We want simple method and property expressions to
work without parentheses.

write-output $a/foo.txt Command mode; $a/foo.txt expands to 4/foo.txt. This is the opposite of
the previous example. Here we want it to be evaluated as a string in
command mode. The interpreter first parses in expression mode and
sees that it’s not a valid property expression, so it backs up and rescans
the argument in command mode. As a result it is treated as an expand-
able string.

Table 2.2 Parsing mode examples (continued)

Example command line Parsing mode and explanation
42 CHAPTER 2 THE BASICS

2.2.4 Statement termination

In PowerShell, there are two statement terminator characters: the semicolon (;) and
(sometimes) the newline. Why is newline a statement separator only sometimes? The
rule is that if the previous text is a syntactically complete statement, a newline is con-
sidered to be a statement termination. If it isn’t complete, the newline is simply
treated like any other whitespace. This is how the interpreter can determine when a
command or expression crosses multiple lines. For example, in the following:

PS (1) > 2 +
>> 2
>>
4
PS (2) >

the sequence “2 +” is incomplete so the interpreter prompts you to enter more text.
(This is indicated by the nest prompt characters >>.) On the other hand, in the next
sequence

PS (2) > 2
2
PS (3) > + 2
2
PS (4) >

The number 2 by itself is a complete expression, so the interpreter goes ahead and
evaluates it. Likewise, “+ 2” is a complete expression and is also evaluated (+ in this
case is treated as the unary plus operator). From this, you can see that if the newline
comes after the plus operator, the interpreter will treat the two lines as a single expres-
sion. If the newline comes before the plus operator, it will treat the two lines as two
individual expressions.

Most of the time, this mechanism works the way you expect, but sometimes you
can receive some unanticipated results. Take a look at the following example:

PS (22) > $b = (2
>> + 2)
>>
Missing closing ')' in expression.
At line:2 char:1
+ + <<<< 2)
PS (23) >

This was a question raised by one of our beta testers. They were surprised by this
result and thought there was something wrong with the interpreter, but in fact, this is
not a bug. Here’s what’s happening:

Consider the following text:

> $b = (2 +
> 2)
PARSING AND POWERSHELL 43

It is parsed as $b = (2 + 2) because a trailing "+" operator is only valid as part of a
binary operator expression. Since the sequence $b = (2 + can’t be a syntactically
complete statement, the newline is treated as whitespace. On the other hand, con-
sider the text

> $b = (2
> + 2)

In this case, 2 is a syntactically complete statement, so the newline is now treated as a
line terminator. In effect, the sequence is parsed like $b = (2 ; +2); that is, two
complete statements. Since the syntax for a parenthetical expression is

(<expr>)

you get a syntax error—the interpreter is looking for a closing parenthesis as soon as
it has a complete expression. Contrast this with using a subexpression instead of just
the parentheses:

>> $b = $(
>> 2
>> +2
>>)
>>
PS (24) > $b
2
2

Here the expression is valid because the syntax for subexpressions is

$(<statementList>)

But how do you deal with the case when you do need to extend a line that isn’t exten-
sible by itself? This is another place where you can use the backtick escape character.
If the last character in the line is a backtick then the newline will be treated as simple
breaking space instead of as a new line:

PS (1) > write-output `
>> -inputobject `
>> "Hello world"
>>
Hello world
PS (2) >

Finally, one thing that surprises some people is that strings are not terminated by a
newline character. Strings can carry over multiple lines until a matching, closing
quote is encountered:

PS (1) > write-output "Hello
>> there
>> how are
>> you?"
>>
44 CHAPTER 2 THE BASICS

Hello
there
how are
you?
PS (2) >

In this example, you could see a string that extended across multiple lines. When that
string was displayed, the newlines were preserved in the string.

The handling of end-of-line characters in PowerShell is another of the tradeoffs
we had to make for PowerShell to be useful as a shell. Although the handling of end-
of-line characters is a bit strange compared to non-shell languages, the overall result is
easy for most people to get used to.

2.3 PIPELINES AND COMMANDS

At long last we get to the details of pipelines. We’ve been talking about them through-
out this chapter, but here we discuss them in detail. A pipeline is a series of com-
mands separated by the pipe operator “|” as shown in figure 2.3. In some ways, the
term production line better describes pipelines in PowerShell. Each command in the
pipeline receives an object from the previous command, performs some operation on
it, and then passes it along to the next command in the pipeline.

This, by the way, is the great PowerShell Heresy. All (for some definition
of all) previous shells passed strings only through the pipeline. Many people
had difficulty with the notion of doing anything else. Like the character in
The Princess Bride, they would cry “inconceivable!” And we would respond,
“I do not think that word means what you think it means.”

All of the command categories take parameters and arguments. To review, a parame-
ter is a special token that starts with a hyphen (“-”) and is used to control the behav-
ior of the command. An argument is a data value consumed by the command. In the
following example:

get-childitem –filter *.dll –path c:\windows -recurse

dir -recurse -filter *.cs | format-table name,length

Command

Parameter with
Argument

Switch Parameter Positional
Argument

Command

Pipe Operator Figure 2.3

Anatomy of a pipeline

AUTHOR’S
NOTE
PIPELINES AND COMMANDS 45

-filter is a parameter that takes one argument *.dll. The string c:\windows is
the argument to the positional parameter -path.

Next we’ll discuss the signature characteristic of pipelines—streaming behavior.

2.3.1 Pipelines and streaming behavior

Streaming behavior occurs when objects are processed one at a time in a pipeline. As
mentioned, this is one of the characteristic behaviors of shell languages. In stream
processing, objects are output from the pipeline as soon as they become available. In
more traditional programming environments, the results are returned only when the
entire result set has been generated—the first result and the last result are returned at
the same time. In a pipelined shell, the first result is returned as soon as it is available
and subsequent results return as they also become available.

This aspect of streaming is important in an interactive shell environment, since
you want to see objects as soon as they are available. The next example shows a simple
pipeline that traverses through C:\WINDOWS looking for all of the DLLs that have the
word “system” in their names:

PS (1) > dir -rec -fil *.dll | where {$_.name -match "system.*dll"}

 Directory:
Microsoft.Management.Automation.Core\FileSystem::C:\WINDOWS\assembly
\GAC\System\1.0.3300.0__b77a5c561934e089

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 2/26/2004 6:29 PM 1167360 System.dll

 Directory:
Microsoft.Management.Automation.Core\FileSystem::C:\WINDOWS\assembly
\GAC\System\1.0.5000.0__b77a5c561934e089

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 2/26/2004 6:36 PM 1216512 System.dll

With streaming behavior, as soon as the first file is found, it’s displayed. Without
streaming, you would have to wait until the entire directory structure has been
searched before you’d start to see any results.

In most shell environments, streaming is accomplished by using separate processes
for each element in the pipeline. In PowerShell, which only uses a single process (and
a single thread as well), streaming is accomplished by splitting cmdlets into three
clauses: begin-processing, process-object, and end-processing. In a pipeline, the
begin-processing clause is run for all cmdlets in the pipeline. Then the process-object
clause is run for the first cmdlet. If this clause produces an object, that object is
passed to the process-object clause of the next cmdlet in the pipeline, and so on.
Finally the end-processing clauses are all run. (We cover this sequencing again in
46 CHAPTER 2 THE BASICS

more detail in chapter 7, which is about scripts and functions, since they can also
have these clauses.)

2.3.2 Parameters and parameter binding

Now let’s talk about more of the details involved in binding parameters to com-
mands. Parameter binding is the process in which values are bound to the parameters
on a command. These values can come from either the command line or the pipeline.
Here is an example of a parameter argument being bound from the command line:

PS (1) > write-output -inputobject 123
123

and here is the same example where the parameter is taken from the input object stream:

PS (2) > 123 | write-output
123

The binding process is controlled by declaration information on the command itself.
Parameters can have the following characteristics: they are either mandatory or
optional; they have a type to which the formal argument must be convertible; and
they can have attributes that allow the parameters to be bound from the pipeline.
Table 2.3 describes the actual steps in the binding process:

Table 2.3 Steps in the parameter binding process

Binding Step Description

1. Bind all named parameters Find all unquoted tokens on the command line that start with a
dash. If the token ends with a “:” then an argument is required.
If there is no “:” then look at the type of the parameter and see
if an argument is required. Convert the type of actual argument
to the type required by the parameter and bind the parameter.

2. Bind all positional parameters If there are any arguments on the command line that haven’t
been used, look for unbound parameters that take positional
parameters and try to bind them.

3. Bind from the pipeline by value
 with exact match

If the command is not the first command in the pipeline and
there are still unbound parameters that take pipeline input, try
to bind to a parameter that matches the type exactly.

4. If not bound, then bind from the
 pipe by value with conversion

If the previous step failed, then try to bind using a type
conversion.

5. If not bound, then bind from
 the pipeline by name with
 exact match

If the previous step failed, then look for a property on the input
object that matches the name of the parameter. If the types
exactly match, then bind the parameter.

6. If not bound, then bind from
 the pipeline by name with
 conversion

If the input object has a property whose name matches the
name of a parameters and the type of the parameter is convert-
ible to the type of the parameter, then bind the parameter.
PIPELINES AND COMMANDS 47

As you can see, this binding process is quite involved. In practice, the parameter
binder almost always does what you want—that’s why a sophisticated algorithm is
used; however, there are times when you’ll need to understand the binding algorithm
to get a particular behavior. PowerShell has built-in facilities for debugging the
parameter binding process that can be accessed through the Trace-Command
cmdlet. (Trace-Command is covered in detail in chapter 9.) Here is an example
showing how to use this cmdlet:

trace-command -name ParameterBinding -Option All `
-Expression { 123 | write-output } -PSHost

In this example, we are tracing the expression in the braces—that is the expression:

123 | write-output

This expression pipes the number 123 to the cmdlet Write-Output. The Write-
Output cmdlet takes a single mandatory parameter -InputObject, which allows
pipeline input by value. (The tracing output is long but fairly self-explanatory, so I
haven’t included it here. This is something that you should experiment with to see
how it can help you figure out what’s going on in the parameter binding process.)

And now for the final topic in this chapter: formatting and output. The format-
ting and output subsystem is the magic that lets PowerShell figure out how to display
the output of the commands you type.

2.4 FORMATTING AND OUTPUT

We’ve reached this point without actually discussing how PowerShell figures out how
to display output. In general, we’ve just run commands and depended on the system
to figure out how to display the results. Occasionally we’ve used commands such as
Format-Table and Format-List to give general guidance on the shape of the dis-
play, but no specific details. Let’s dig in now and see how this all works.

As always, since PowerShell is a type-based system, types are used to determine
how things are displayed. However, normal objects don’t usually know how to display
themselves. PowerShell deals with this by including a database of formatting informa-
tion for different types of objects. This is part of the extended type system, which is an
important component of the overall system. This extended type system allows Power-
Shell to add new behaviors to existing .NET objects. The default formatting database
is stored in the PowerShell install directory, which you can get to by using the
$PSHOME shell variable. Here’s a list of the files that were included at the time this
book was written:
48 CHAPTER 2 THE BASICS

PS (1) > dir $PSHOME/*format* | ft name

Name

Certificate.Format.ps1xml
DotNetTypes.Format.ps1xml
FileSystem.Format.ps1xml
Help.Format.ps1xml

PowerShellCore.Format.ps1xml
PowerShellTrace.Format.ps1xml
Registry.format.ps1xml

You can more or less figure out what types of things each of these files contains
descriptions for. (The others should become clear after reading the rest of this book.)
These files are XML documents that contain descriptions of how each type of object
should be displayed. In fact, these descriptions are fairly complex and somewhat diffi-
cult to write. It is possible for end-users to add their own type descriptions, but that’s
beyond the scope of this chapter. The important thing to understand is how the for-
matting and outputting commands work together.

2.4.1 The formatting cmdlets

Display of information is controlled by the type of the objects being displayed, but
the user can choose the shape of the object by using the “format-*” commands:

PS (5) > get-command format-* | ft name

Name

Format-Custom
Format-List
Format-Table
Format-Wide

By shape, we mean things such as a table or a list. Here’s how they work. The Format-
Table cmdlet formats output as a series of columns displayed across your screen:

PS (1) > get-item c:\ | format-table

 Directory:

Mode LastWriteTime Length Name
---- ------------- ------ ----
d--hs 4/9/2006 10:04 PM C:\

By default, it tries to use the maximum width of the display and guesses at how wide
a particular field should be. This allows you to start seeing data as quickly as possible
(streaming behavior), but doesn’t always produce optimal results. You can achieve a
better display by using the -autosize switch, but this requires the formatter to pro-
cess every element before displaying any of them. It has to do this to figure out the
best width to use for each field. The result in this example looks like:
FORMATTING AND OUTPUT 49

PS (3) > get-item c:\ | format-table -autosize

 Directory:

Mode LastWriteTime Length Name
---- ------------- ------ ----
d--hs 4/9/2006 10:04 PM C:\

Okay—so it doesn’t look much different: things are more compressed with less
whitespace. In practice, the streaming default layout is pretty good and you don’t
need to use -autosize, but sometimes it can help make things more readable.

The Format-List command, on the other hand, displays the elements of the
objects as a list, one after the other:

PS (2) > get-item c:\ | format-list

 Directory:

Name : C:\
CreationTime : 2/26/2001 3:38:39 PM
LastWriteTime : 4/9/2006 10:04:38 PM
LastAccessTime : 4/11/2006 9:33:51 PM

If there is more than one object to display, they will appear as a series of lists. Let’s
try this:

PS (3) > get-item c:\,d:\ | fl

 Directory:

Name : C:\
CreationTime : 2/26/2001 3:38:39 PM
LastWriteTime : 6/21/2006 1:20:06 PM
LastAccessTime : 6/21/2006 9:14:46 PM

Name : D:\
CreationTime : 12/31/1979 11:00:00 PM
LastWriteTime : 12/31/1979 11:00:00 PM
LastAccessTime : 12/31/1979 11:00:00 PM

This is usually the best way to display a large collection of fields that won’t fit well
across the screen. (Obviously the idea of an -autosize switch makes no sense for
this type of formatter.)

The Format-Wide cmdlet is used when you want to display a single object prop-
erty in a concise way. It will treat the screen as a series of columns for displaying the
same information. Here’s an example:

PS (1) > gps s* | format-wide -Column 8 id

1372 640 516 1328 400 532 560 828
876 984 1060 1124 4
50 CHAPTER 2 THE BASICS

In this example, we want to display the process ids of all processes whose names start
with “s” in eight columns. This formatter allows for dense display of information.

The final formatter is Format-Custom. This displays objects while preserving
the basic structure of the object. Since most objects have a structure that contains
other objects which, in turn, contain other objects, this can produce extremely ver-
bose output. Here’s a small part of the output from the Get-Item cmdlet, displayed
using Format-Custom:

PS (10) > get-item c:\ | format-custom -depth 1

class DirectoryInfo
{
 PSPath = Microsoft.PowerShell.Core\FileSystem::C:\
 PSParentPath =
 PSChildName = C:\
 PSDrive =
 class PSDriveInfo
 {
 CurrentLocation =
 Name = C
 Provider = Microsoft.PowerShell.Core\FileSystem
 Root = C:\
 Description = C_Drive
 Credential = System.Management.Automation.PSCredential
 }

The full output is considerably longer, and notice that we’ve told it to stop walking
the object structure at a depth of 1. You can imagine just how verbose this output can
be! So why have this cmdlet? Because it’s a useful debugging tool, either when you’re
creating your own objects or just for exploring the existing objects in the .NET class
libraries. You can see that this is a tool to keep in your back pocket for when you’re
getting down and dirty with objects, but not something that you’ll typically use on a
day-to-day basis.

2.4.2 The outputter cmdlets

Now that we know how to format something, how do we output it? You don’t have to
worry because, by default, things are automatically sent to (can you guess?) Out-
Default.

Note that all of the following three examples do exactly the same thing.

dir | out-default
dir | format-table
dir | format-table | out-default

This is because the formatter knows how to get the default outputter, the
default outputter knows how to find the default formatter, and the system
in general knows how to find the defaults for both. The Möbius strip of
subsystems!

AUTHOR’S
NOTE
FORMATTING AND OUTPUT 51

As with the formatters, there are several outputter cmdlets available in PowerShell out
of the box. You can use the Get-Command command to find them:

PS (1) > get-command out-* | ft name

Name

Out-Default
Out-File
Out-Host
Out-Null
Out-Printer
Out-String

Here we have a somewhat broader range of choices. We’ve already talked about
Out-Default. The next one we’ll talk about is Out-Null. This is a simple out-
putter; anything sent to Out-Null is simply discarded. This is useful when you
don’t care about the output for a command; you want the side effect of running the
command. For example, the mkdir command outputs a listing of the directory it
just created.

PS (1) > mkdir foo

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Temp

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 6/25/2006 8:50 PM foo

If you don’t want to see this output, pipe it to Out-Null. First remove the directory
we created, then create the directory.

PS (2) > rmdir foo
PS (3) > mkdir foo | out-null
PS (4) > get-item foo

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Temp

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 6/25/2006 8:50 PM foo

And finally, since we didn’t get the message, we verify that the directory was actually
created.

For the I/O redirection fans in the audience; piping to Out-Null is essen-
tially equivalent to doing redirecting to $null. So

mkdir foo | out-null

is equivalent to

mkdir foo > $null

AUTHOR’S
NOTE
52 CHAPTER 2 THE BASICS

Next we have Out-File. Instead of sending the output to the screen, this sends it to
a file. (This command is also used by I/O redirection when doing output to a file.) In
addition to writing the formatted output, Out-File has several flags that control
how this output is written. These flags include the ability to append to a file instead
of replacing it, to force writing to read-only files, and to choose the output encodings
for the file. This last item is the trickiest one. You can choose from a number of the
text encodings supported by Windows. Since I can never remember what they all are,
here’s a trick: enter the command with an encoding that you know doesn’t exist:

PS (9) > out-file -encoding blah
Out-File : Cannot validate argument "blah" because it does
not belong to the set "unicode, utf7, utf8, utf32, ascii, b
igendianunicode, default, oem".
At line:1 char:19
+ out-file -encoding <<<< blah
PS (10) >

You can see in the error message that all of the valid encoding names are displayed.
Now, if you don’t understand what these encodings are, don’t worry about it and just
let the system use its default value.

Where you are likely to run into problems with output encoding (or input
encoding for that matter) is when you are creating files that are going to be
read by another program. These programs may have limitations on what
encodings they can handle, especially older programs. To find out more
about file encodings, search for “file encodings” on http://msdn.mi-
crosoft.com. MSDN contains a wealth of information on this topic. Chap-
ter 10 also contains additional information about working with file
encodings in PowerShell.

The Out-Printer cmdlet doesn’t need much additional explanation; it simply
routes its output to the printer instead of to a file or to the screen.

The Out-Host cmdlet is a bit more interesting—it sends its output back to the
host. This has to do with the separation in PowerShell between the interpreter or
engine and the application that hosts that engine. In theory, the host could be any
application. It could be Visual Studio, it could one of the Microsoft Office applica-
tions, or it could be a custom third-party application. In each of those cases, the host
application would have to implement a special set of interfaces so that Out-Host
could render its output properly. In practice, since the only host that’s shipped with
version 1 of PowerShell is a console host, this means that Out-Host renders its out-
put on the screen.

Out-Default delegates the actual work of outputting to the screen to
Out-Host.

The last output cmdlet to discuss is Out-String. This one’s a bit different. All of
the other cmdlets sent the output off somewhere else and didn’t write anything to the

AUTHOR’S
NOTE

AUTHOR’S
NOTE
FORMATTING AND OUTPUT 53

pipeline. The Out-String cmdlet formats its input and sends it as a string to the
next cmdlet in the pipeline. Note that I said string, not strings. By default, it sends the
entire output as a single string. This is not always the most desirable behavior—a col-
lection of lines is usually more useful—but at least once you have the string, you can
manipulate it into the form you want. Now, if you do want the output as a series of
strings, use the -stream switch parameter. When this parameter is specified, the
output will be broken into lines and streamed one at a time.

Note that this cmdlet runs somewhat counter to the philosophy of PowerShell;
once you’ve rendered the object to a string, you’ve lost its structure. The main reason
for including this cmdlet is for interoperation with existing APIs and external com-
mands that expect to deal with strings. So, if you find yourself using Out-String a
lot in your scripts, stop and think if it’s really the best way to be attacking the problem.

That’s it for the basics: commands, parameters, pipelines, parsing, and presenta-
tion. You should now have a sufficient foundation to start moving on to some of the
more advanced topics in PowerShell.

2.5 SUMMARY

Chapter 2 covered the basic structure of PowerShell commands, pipelines, and syntax:

• We discussed the basic command and pipeline syntax and command parameter
binding.

• PowerShell has four types of commands: cmdlets, functions, script commands,
and native commands, each with slightly different characteristics.

• We discussed the notion of elastic syntax—concise on the command line and
complete in scripts.

• The fact that PowerShell is a command language as well as a scripting language
impacts how it parses text in a number of ways:

• PowerShell parses scripts in two modes: expression mode and command mode,
which is a critical point to appreciate when using PowerShell.

• The PowerShell escape character is backtick (`), not backslash.

• PowerShell supports both double-quotes and single-quotes; variable and expres-
sion expansion is done in double quotes but not in single quotes.

• Line termination is handled specially in PowerShell because it is a command
language.

• PowerShell uses a sophisticated formatting and outputting system to determine
how to render objects without requiring detailed input from the user.
54 CHAPTER 2 THE BASICS

C H A P T E R 3

Working with types

3.1 Type management in the wild, wild west 55
3.2 Basic types and literals 60
3.3 Type conversions 79
3.4 Summary 86
“When I use a word,” Humpty Dumpty said, in rather a scornful
tone, “it means just what I choose it to mean—neither more nor less.”

 —Lewis Carroll, Through the Looking Glass

As we’ve discussed previously, the use of objects in PowerShell makes PowerShell
unlike most shell environments, which can only deal with strings. And where you
have objects, you also have object types. In fact much of the power in PowerShell
comes from the innovative way we use types. In this chapter, we’ll look at the Power-
Shell type system and how to take advantage of it, and examine some of the things
you can accomplish with types in PowerShell.

3.1 TYPE MANAGEMENT IN THE WILD, WILD WEST

Shell languages are frequently called typeless languages. This is not really accurate since,
fundamentally, programming is all about working with different types of objects. The
more interesting question is how much implicit work the system does in handling
types and how much work is required of you. This spectrum of effort is conventionally
split into static and dynamic typing. In statically typed systems, much work is done for
55

you as long as you stay within the domain of the types you’re working on. Once you
move outside that domain, it’s up to the user to figure out how to move objects
between those domains. The other cost of static typing is that you are required to
declare the type of every variable, even when the compiler can figure it out for itself.
Take the following C# statement for example:

string myString = "hello world";

The variable myString is declared to be a string, even though it’s obvious that it has
to be a string. You’re assigning a string to it, so what else could it be? It’s this kind of
redundancy that dynamic languages try to avoid. In dynamically typed languages, the
user is rarely required to specify the type of a variable. Typically you don’t even have
to declare the variable at all.

3.1.1 PowerShell: a type-promiscuous language

The tendency is to characterize PowerShell as a dynamically typed language, but a
better description is that PowerShell is a type-promiscuous language (sounds salacious
doesn’t it?). By type-promiscuous, we mean that PowerShell will expend a tremendous
amount of effort trying to turn what you have into what you need with as little work
on your part as it can manage. When you ask for a property Y, PowerShell doesn’t care
if the object foo is a member of class X. It only cares whether foo has a property Y.

People who are used to strongly typed environments find this approach disturb-
ing. It sounds too much like “Wild Wild West” type management. In practice, the
interpreter is very careful about making sure its transformations are reasonable and
that no information is unexpectedly lost. This is particularly important when dealing
with numeric calculations. In PowerShell, you can freely mix and match different
types of numbers in expressions. You can even include strings in this mix. PowerShell
converts everything as needed as long as there is no loss in precision without specific
guidance from the user. We’ll use the remainder of this section to present a number of
examples that illustrate this point. We’ll look at operations where the conversions
succeed and the type of the result of the operation. (For convenience, we’ll use the
.NET GetType() method to look at the base type of the results of the various
expressions.) We’ll also look at some examples where there is an error because the
conversion causes some significant loss of information.

In our first example, let’s add an integer, a floating point number, and a string
that contains only digits.

PS (1) > 2 + 3.0 + "4"
9
PS (2) > (2 + 3.0 + "4").GetType().FullName
System.Double

As you can see from the result, everything was widened to a double-precision floating
point number. (Widening means converting to a representation that can handle larger
or wider numbers: a [long] is wider than an [int], and so forth.) Now let’s be a bit
trickier. Let’s put the floating point number into quotes this time.
56 CHAPTER 3 WORKING WITH TYPES

PS (3) > 2 + "3.0" + 4
9
PS (4) > (2 + "3.0" + 4).GetType().FullName
System.Double

Once again the system determines that the expression has to be done in floating point.

NOTE The .NET single-precision floating point representation isn’t typically used
unless you request it. In PowerShell, there usually isn’t a performance ben-
efit for using single precision, so there is no reason to use this less precise
representation.

Now let’s look at some simple examples that involve only integers. As you would
expect, all these operations result in integers as long as the result can be represented as
an integer.

PS (5) > (3 + 4)
7
PS (6) > (3 + 4).GetType().FullName
System.Int32
PS (7) > (3 * 4).GetType().FullName
System.Int32

Let’s try an example using the division operator:

PS (8) > 6/3
2
PS (9) > (6/3).GetType().FullName
System.Int32

Since 6 is divisible by 3, the result of this division is also an integer. But what happens
if the divisor isn’t a factor? Let’s try it and see.

PS (10) > 6/4

1.5
PS (11) > (6/4).GetType().FullName
System.Double

The result is now a double. The system noticed that there would be a loss of information
if the operation were performed with integers, so it’s executed using doubles instead.

Finally, let’s try some examples using scientific notation. Let’s add an integer to a
large decimal.

PS (10) > 1e300
1E+300
PS (11) > 1e300 + 12
1E+300

The operation executed with the result being a double. In effect, adding an integer
to a number of this magnitude means that the integer is ignored. This sort of loss is
considered “OK” by the system. But there is another numeric type that is designed to
be precise: System.Decimal. Normally you only use this type when you really care
TYPE MANAGEMENT IN THE WILD, WILD WEST 57

about the precision of the result. Let’s try the previous example, adding a decimal
instead of an integer.

PS (12) > 1e300 + 12d
Cannot convert "1E+300" to "System.Decimal". Error: "Value was
either too large or too small for a
Decimal."
At line:1 char:8
+ 1e300 + <<<< 12d
PS (13) >

This results in an error because when one of the operands involved is a [decimal]
value, all operands are converted to decimal first and then the operation is performed.
Since 1e300 is too large to be represented as a decimal, the operation will fail with an
exception rather than lose precision.

From these examples, you can see that while the PowerShell type conversion sys-
tem is aggressive in the types of conversions it performs, it is also careful about how it
does things.

Now that you have a sense of the importance of types in PowerShell, let’s look at
how it all works.

3.1.2 The type system and type adaptation

Since everything in PowerShell involves types in one way or another, it’s important to
understand how the PowerShell type system works. That’s what we’re going to cover in
this section. At the core of the PowerShell type system is the .NET type system. Little
by little, .NET is expanding to encapsulate everything in the Windows world, but it
hasn’t swallowed everything yet. There are still several other object representations that
Windows users, especially Windows system administrators, have to deal with. There’s
COM (essentially the precursor to.NET); WMI, which uses MOF (Management
Object Format) definitions; ADO database objects; ADSI directory services; and so on
(welcome to Object Alphabet Soup). There’s even everyone’s favorite old/new (as in
“everything old is new” again) object representation: XML. And finally the .NET
libraries, as well-designed as they are, aren’t always quite what you want them to be.

In an effort to bring harmony to this object soup and fix some of the shortcom-
ings of the various object representations, PowerShell uses a type-adaptation system
that masks all of the details of these different objects’ representations. A PowerShell
script never directly accesses an object. It always goes through the type adaptation
layer—the PSObject layer—that rationalizes the interfaces presented to the user. The
PSObject layer allows for a uniquely consistent user experience when working with
the different types of objects. This architecture is shown in figure 3.1.

When you see an expression like

$x.Count

you don’t have to know or care about the type of object stored in $x. You only care that
it has a property named Count. PowerShell never generates code to directly access the
Count property on a particular type of object. Instead it makes an indirect call through
58 CHAPTER 3 WORKING WITH TYPES

the PSObject layer, which figures out how a Count property for the object can be
accessed. If $x contains a .NET object, it will return that object’s Length property. If
$x contains an XML document, the XML adapter will look for a node called “count”
on the top level of that XML document. The object in the variable might not even con-
tain a Count property at all. With PowerShell, you can have a type system with a syn-
thetic property (called a PSMember) defined by the type system itself, instead of on the
object. Table 3.1 lists the available set of PowerShell object adapters.

Let’s recap. The adapter mechanism lets you work with objects in PowerShell. Com-
mands produce objects for you to manipulate through the adapters. But what about

Table 3.1 The basic set of object adapters available in PowerShell

Adapted Object Type Description

.NET Adapter This is the basic adapter for all .NET types. This adapter directly maps the
properties on the .NET object and adds several new ones that start with a
PS prefix.

COM Object Adapter This adapter provides access to COM objects. Supported objects include
the Windows Script Host classes and scriptable applications such as
Microsoft Word or Internet Explorer.

WMI Adapter This adapts objects returned from a WMI provider.

ADO Adapter This adapter allows you to treat the columns in ADO data tables as though
they were properties.

Custom Object Adapter This adapter manages objects for which there is no actual underlying
object, only synthetic properties.

ADSI Object Adapter This adapts objects returned from the Active Directory Service Interfaces.

PowerShell Script
that Accesses
Objects

.NET Object Adapter

.NET Object

WMI Object Adapter

WMI Object

COM Object Adapter

COM Object

Figure 3.1 This diagram shows the architecture of the PowerShell type adaptation system.

For each kind of data that PowerShell works with, there is a corresponding adapter. An in-

stance of a particular data object is subsequently wrapped in an instance of the associated

type adapter. This type adapter instance acts as an intermediary between the object and Pow-

erShell, proxying all accesses.
TYPE MANAGEMENT IN THE WILD, WILD WEST 59

data contained or embedded in the script itself? In other words, how are objects stored
inline in the scripts? This is accomplished through the various types of object literals that
we address in the next section.

3.2 BASIC TYPES AND LITERALS

All programming languages have a set of basic or primitive types from which every-
thing else is built up. These primitive types usually have some form of corresponding
syntactic literal. Literal tokens in the language are used to represent literal data objects
in the program. In PowerShell there are the usual literals—strings, numbers, and
arrays—but there are some other literals that aren’t typically found outside of
dynamic languages, namely dictionaries or hashtables. PowerShell also makes heavy
use of type literals that correspond to type objects in the system. In this section, we’ll
go through each of the literals, how they are represented in script text, and the details
of how they are implemented in the PowerShell runtime.

3.2.1 Strings

There are actually four different kinds of string literals in PowerShell—single-quoted
strings, double-quoted strings, single-quoted here-strings, and double-quoted here-
strings. The underlying representation for all of these strings is the same, however.

String representation in PowerShell

In PowerShell, a string is a sequence of 16-bit Unicode characters and is directly
implemented using the .NET System.String type. Since PowerShell strings use
Unicode, they can effectively contain characters from every language in the world.

The encoding used in strings is obviously important in international envi-
ronments. If you are interested in the nitty-gritty details of the encoding
used in System.String, here’s what the Microsoft Developer’s Network doc-
umentation has to say:

“Each Unicode character in a string is defined by a Unicode scalar value,
also called a Unicode code point or the ordinal (numeric) value of the Uni-
code character. Each code point is encoded using UTF-16 encoding, and
the numeric value of each element of the encoding is represented by a Char.
The resulting collection of Char objects constitutes the String.

“A single Char usually represents a single code point; that is, the numer-
ic value of the Char equals the code point. However, a code point might
require more than one encoded element. For example, a Unicode supple-
mentary code point (a surrogate pair) is encoded with two Char objects.”

Refer to the MSDN documentation for additional details.

There are a couple of other characteristics that strings in PowerShell inherit from the
underlying .NET strings. They can also be arbitrarily long and they are immutable—
the contents of a string can be copied but can’t be changed.

AUTHOR’S
NOTE
60 CHAPTER 3 WORKING WITH TYPES

Single and double-quoted strings

Because of the expression-mode/command-mode parsing dichotomy described in
chapter 2, there are several ways strings can be represented. In expression mode, a
string is denoted by a sequence of characters surrounded by matching quotes, as
shown in the following example:

PS (1) > "This is a string in double quotes"
This is a string in double quotes
PS (2) > 'This is a string in single quotes'
This is a string in single quotes
PS (3) >

Literal strings can contain any character including newlines, with the exception of an
unquoted closing quote character. In double-quoted strings, to embed the closing quote
character, you have to either quote it with the backtick character or double it up. In other
words, two adjacent quotes become a single literal quote in the string. In single-quoted
strings, doubling up the quote is the only way to embed a literal quote in the string. This
is one area where there is an important difference between single- and double-quoted
strings. In single-quote strings, the backtick is not special. This means that it can’t be
used for embedding special characters such as newlines or escaping quotes.

Like the UNIX shells, PowerShell supports variable substitutions. These variable
substitutions or expansions are only done in double-quoted strings (which is why
these are sometimes called expandable strings).

Arguments to commands are treated as though they were in double quotes,
so variables will be expanded in that situation as well. We’ll see examples of
this later on.

Let’s look at an example of string expansion:

PS (1) > $foo = "FOO"
PS (2) > "This is a string in double quotes: $foo"
This is a string in double quotes: FOO
PS (3) > 'This is a string in single quotes: $foo'
This is a string in single quotes: $foo
PS (4) >

In the preceding lines, you can see that $foo in the double-quoted string was
replaced by the contents of the variable "FOO", but not in the single-quoted case.

Subexpression expansion in strings

Expandable strings can also include arbitrary expressions by using the subexpression
notation. A subexpression is a fragment of PowerShell script code that is replaced by
the value resulting from the evaluation of that code. Here are some examples of sub-
expression expansion in strings.

PS (1) > "2+2 is $(2+2)"
2+2 is 4
PS (2) > $x=3

AUTHOR’S
NOTE
BASIC TYPES AND LITERALS 61

PS (3) > "$x * 2 is $($x * 2)"
3 * 2 is 6
PS (4) >

The expression in the $(...) sequence in the string is replaced by the result of eval-
uating the expression. $(2+2) is replaced by 4 and so on.

Using complex subexpressions in strings

So far, these examples show only simple embedded expression. In fact, subexpressions
allow statement lists—a series of PowerShell statements separated by semicolons—to
be embedded. Here’s an example where the subexpression contains three simple state-
ments. First let’s just execute the three simple statements:

PS (1) > 1;2;3 # three statements
1
2
3

Now let’s execute the same set of statements in a subexpression expansion:

PS (2) > "Expanding three statements in a string: $(1; 2; 3)"
Expanding three statements in a string: 1 2 3
PS (3) >

The result shows the output of the three statements concatenated together, space-
separated, and inserted into the result string. Here’s another example of using a for
statement in a subexpression expansion.

PS (1) > "Numbers 1 thru 10: $(for ($i=1; $i -le 10; $i++) { $i })."
Numbers 1 thru 10: 1 2 3 4 5 6 7 8 9 10.
PS (2) >

The output of all the iterations for the loop are gathered up, turned into a string with
one value separated from the next by a space, and then substituted into overall string.
As you can see, this can be quite powerful. Using a subexpression in a string is one
way to quickly generate formatted results when presenting data.

String expansion considerations

PowerShell expands strings when an assignment is executed. It doesn’t re-evaluate
those strings when the variable is used later on. This is an important point. Let’s look
at two examples that will make this clear. In these examples, we’ll use the post-incre-
ment operator ++, which adds one to a variable, and the range operator, which
expands to a sequence of numbers. Let’s take a look. In the first example, we initialize
$x to 0 and then assign a string with an expansion that increments $x to a variable
$a. Next we’ll output $a three times to see what happens to the value of $x.

PS (1) > $x=0
PS (2) > $a = "x is $($x++; $x)"
PS (4) > 1..3 | foreach {$a}
62 CHAPTER 3 WORKING WITH TYPES

x is 1
x is 1
x is 1

As you can see, $x was incremented once when $a was assigned, but didn’t change
on subsequent references. Now let’s inline the string literal into the body of the loop
and see what happens.

PS (5) > 1..3 | foreach {"x is $($x++; $x)"}
x is 2
x is 3
x is 4

This time around, we can see that $x is being incremented each time. To reiterate,
string literal expansion is done only when the literal is assigned.

There actually is a way to force a string to be re-expanded if you really need
to do it. You can do this by calling $ExecutionContext.InvokeCom-
mand.ExpandString('a is $a'). This method will return a new
string with all of the variables expanded.

Here-string literals

Getting back to the discussion of literal string notation, there is one more form of
string literal, called a here-string. A here-string is used to embed large chunks of text
inline in a script. This can be powerful when you’re generating output for another
program. Here’s an example that assigns a here-string to the variable $a.

PS (1) > $a = @"
>> Line one
>> Line two
>> Line three
>> "@
>>
PS (2) > $a
Line one
Line two
Line three

There is a lexical element in C# that looks a lot like PowerShell here-strings.
In practice, the C# feature is most like PowerShell’s single-quoted strings.
In PowerShell, a here-string begins at the end of the line and the terminat-
ing sequence must be at the beginning of the line that terminates the here-
string. In C#, the string terminates at the first closing quote that isn’t dou-
bled up.

When $a is displayed, it contains all of the lines that were entered. Now you’re prob-
ably saying, “Wait a minute—you told me I can do the same thing with a regular
string. What makes here-strings so special?” It has to do with how quoting is handled.
Here-strings have special quoting rules.

AUTHOR’S
NOTE

NOTE TO
C# USERS
BASIC TYPES AND LITERALS 63

Here-strings start with @<quote><newline> and end with <newline><qu-
ote>@. The <newlines> are important because the here-string quote sequences
won’t be treated as quotes without the newlines. The content of the here-string is all
of the lines between the beginning and ending quotes, but not the lines the quotes are
on. Because of the fancy opening and closing quote sequences, other special charac-
ters such as quotes that would cause problems in regular strings are fine here. This
makes it easy to generate string data without having quoting errors. Here is a more
elaborate example

PS (1) > $a = @"
>> One is "1"
>> Two is '2'
>> Three is $(2+1)
>> The date is "$(get-date)"
>> "@ + "A trailing line"
>>
PS (2) > $a
One is "1"
Two is '2'
Three is 3
The date is "1/8/2006 9:59:16 PM"A trailing line
PS (3) >

On line 1, the here-string is assigned to the variable $a. The contents of the here-
string start on line 2. which has a string containing double quotes. Line 3 has a string
with single quotes. Line 4 has an embedded expression, and line 5 calls the Get-
Date cmdlet in a subexpression to embed the current date into the string. Finally,
line 6 appends some trailing text to the whole string. When you look at the output of
the variable shown in lines 9-12, you see that the quotes are all preserved and the
expansions are shown in place.

That should be enough about strings. We can move on to numbers and numeric
literals.

3.2.2 Numbers and numeric literals

As mentioned earlier, PowerShell supports all the basic .NET numeric types and per-
forms conversions to and from the different types as needed. Table 3.2 lists these
numeric types.

Table 3.2 Numeric literals

Example Numeric Literal .NET Full Type Name Short Type Name

1 System.Int32 [int]

10000000000 System.Int64 [long]

1.1 System.Double [double]

1d System.Decimal [decimal]
64 CHAPTER 3 WORKING WITH TYPES

Now that we know the basic numeric types, we need to understand how are literals of
each type are specified.

Specifying numeric literals

In general, you don’t specify a literal having a particular type; the system will figure
out the best way to represent the number. By default, an integer will be used. If the
literal is too large for a 32-bit integer, a 64-bit integer will be used instead. If it’s still
too big or if it contains a decimal point, a System.Double will be used. (Sys-
tem.Single is usually skipped, but it offers no advantages and just complicates the
process.) The one case where you do want to tell the system that you’re requesting a
specific type is with the System.Decimal type. These are specified by placing a “d”
at the end of the number with no intervening space, as shown:

PS (1) > (123).gettype().fullname
System.Int32
PS (2) > (123d).gettype().fullname
System.Decimal
PS (3) > (123.456).gettype().fullname
System.Double
PS (4) > (123.456d).gettype().fullname
System.Decimal

You can see that in each case where there is a trailing “d”, the literal results in a
[decimal] value being created. (If there is a space between the number and the “d”,
you’ll just get an error.)

The multiplier suffixes

Of course, plain numbers are fine for most applications, but in the system adminis-
tration world, there are many special values that you want to be able to conveniently
represent, namely those powers of two—kilobytes, megabytes, and gigabytes. Power-
Shell provides a set of multiplier suffixes for common sizes to help with this, as listed
in table 3.3.

Table 3.3 The numeric multiplier suffixes

Multiplier Suffix Multiplication Factor Example Equivalent Value .NET Type

kb or KB 1024 1KB 1024 System.Int32

kb or KB 1024 2.2kb 2252.8 System.Double

mb or MB 1024*1024 1Mb 1048576 System.Int32

mb or MB 1024*1024 2.2mb 2306867.2 System.Double

gb or GB 1024*1024*1024 1Gb 1073741824 System.Int32

gb or GB 1024*1024*1024 2.14gb 3371549327.36 System.Double
BASIC TYPES AND LITERALS 65

Yes, the PowerShell team is aware that these notations are not consistent
with the IEC recommendations (kibabyte, and so on). Since the point of
this notation is convenience and most people in the IT space are more com-
fortable with Kb than with Ki, we choose to err on the side of comfort over
conformance in this one case. Sorry. This particular issue generated easily
the second most heated debate on the PowerShell internal and external beta
tester lists. We’ll cover the most heated debate later when we get to the
comparison operators.

Hexadecimal literals

The last item we cover in this section is hexadecimal literals. When working with
computers, it’s obviously useful to be able to specify hex literals. PowerShell uses the
same notation as C, C#, and so on; namely preceding the number with the sequence
“0x” and allowing the letters A-F as the extra digits. As always, the notation is case-
insensitive as shown in the following examples.

PS (1) > 0x10
16
PS (2) > 0x55
85
PS (3) > 0x123456789abcdef
81985529216486895
PS (4) > 0xDeadBeef
-559038737

Now that we’ve covered the “basic” literals, string and numbers, let’s move on to the
more interesting and less common ones.

3.2.3 Collections: dictionaries and hashtables

One of the most flexible datatypes supported in PowerShell is the hashtable. This
datatype lets you map a set of keys to a set of values. For example, we may have a
hashtable that maps “red” to 1, “green” to 2, and “yellow” to 4.

TECH TIP A dictionary is the general term for a data structure that maps keys to val-
ues. In the .NET world, this takes the form of an interface (IDictionary)
that describes how a collection should do this mapping. A hashtable is a
specific implementation of that interface. While the PowerShell hashtable
literal syntax only creates instances of System.Collections.Hash-
table, scripts that you write will work properly with any object that im-
plements IDictionary.

Creating and inspecting hashtables

In PowerShell, you use hash literals to create a hashtable inline in a script. Here is a
simple example:

NOTE
ABOUT

STANDARDS
66 CHAPTER 3 WORKING WITH TYPES

PS (26) > $user = @{ FirstName = "John"; LastName = "Smith";
>> PhoneNumber = "555-1212" }
PS (27) > $user

Key Value
--- -----
LastName Smith
FirstName John

PhoneNumber 555-1212

This example created a hashtable that contained three key-value pairs. The hashtable
starts with the token “@{” and ends with “}”. Inside the delimiters, you define a set of
key-value pairs where the key and value are separated by an equals sign “=”. Formally,
the syntax for a hash literal is

<hashLiteral> = '@{' <keyExpression> '=' <pipeline> [<separator>
<keyExpression> '=' <pipeline>] * '}'

<separator> = ';' | <newline>

Now that we’ve created a hashtable, let’s see how we can use it. PowerShell allows you
to access members in a hashtable in two ways—through property notation and
through array notation. Here’s what the property notation looks like:

PS (3) > $user.firstname
John
PS (4) > $user.lastname
Smith

This notation lets you treat a hashtable like an object. This access method is intended
to facilitate the use of hashtables as a kind of lightweight data record. Now let’s look
at using the array notation.

PS (5) > $user["firstname"]
John
PS (6) > $user["firstname","lastname"]
John
Smith

Property notation works pretty much the way you’d expect; you specify a property
name and get the corresponding value back. Array notation, on the other hand, is
more interesting. In the second command in the example, we provided two keys and
got two values back.

Here’s an example that shows some additional features of the underlying hash-
table object. The underlying object for PowerShell hashtables is the .NET type Sys-
tem.Collections.Hashtable. This type has a number of properties and
methods that you can use. One of these properties is the keys property. This prop-
erty will give you a list of all of the keys in the hashtable.
BASIC TYPES AND LITERALS 67

PS (7) > $user.keys
LastName
FirstName
PhoneNumber

In the array access notation, you can use keys to get a list of all of the values in the table.

PS (8) > $user[$user.keys]
Smith
John
555-1212

A more efficient way to get all of the values from a hashtable is to use the
Values property. The point of this example is to demonstrate how you
can use multiple indexes to retrieve the values based on a subset of the keys.

You might have noticed that the keys property didn’t return the keys in alphabetical
order. This is because of the way hashtables work; i.e., keys are randomly distributed
in the table to speed up access. If you do need to get the values in alphabetical order,
here’s how you can do it:

PS (10) > $user.keys | sort-object
FirstName
LastName
PhoneNumber

The Sort-Object (or just sort) cmdlet sorts the keys into alphabetical order and
returns a list. Let’s use this list to index the table.

PS (11) > $user[[string[]] ($user.keys | sort)]
John
Smith
555-1212

You’ll notice something funny about the last example: we had to cast or convert the
sorted list into an array of strings. This is because the hashtable keys mechanism
expects strings, not objects, as keys. There’s much more on casts later in this chapter.

Modifying and manipulating hashtables

Now let’s look at adding, changing, and removing elements from the hashtable. First
let’s add the date and the city where the user lives to the $user table.

PS (1) > $user.date = get-date
PS (2) > $user
Key Value
--- -----
LastName Smith
date 1/15/2006 12:01:10 PM
FirstName John
PhoneNumber 555-1212

AUTHOR’S
NOTE
68 CHAPTER 3 WORKING WITH TYPES

PS (3) > $user["city"] = "Seattle"
PS (4) > $user
Key Value
--- -----
city Seattle
LastName Smith
date 1/15/2006 12:01:10 PM
FirstName John

PhoneNumber 555-1212

A simple assignment using either the property or array accessor notation allows you
to add an element to a hashtable. Now let’s say we got the city wrong—Bob really
lives in Detroit. Let’s fix that.

PS (5) > $user.city = "Detroit"
PS (6) > $user
Key Value
--- -----
city Detroit
LastName Smith
date 1/15/2006 12:01:10 PM
FirstName John
PhoneNumber 555-1212

As this example shows, simple assignment is the way to update an element. Finally,
we don’t really want this element, so let’s remove it from the table with the
remove() method.

PS (7) > $user.remove("city")
PS (8) > $user
Key Value
--- -----
LastName Smith
date 1/15/2006 12:01:10 PM
FirstName John
PhoneNumber 555-1212

The hashtable no longer contains the element.
If you want to create an empty hashtable, use @{ } with no member specifications

between the braces. This creates an empty table that you can then add members to
incrementally.

PS (1) > $newHashTable = @{}
PS (2) > $newHashTable
PS (3) > $newHashTable.one =1
PS (4) > $newHashTable.two = 2
PS (5) > $newHashTable

Key Value
--- -----
two 2
one 1
BASIC TYPES AND LITERALS 69

In the example, there were no members initially; we added two by making assign-
ments. The members are created on assignment.

Hashtables as reference types

Hashtables are reference types, so if you create a hashtable, assign it to a variable $foo,

and assign $foo to another variable $bar, you will have two variables that point to
or reference the same object. Consequently, any changes that are made to one variable
will affect the other, because they’re pointing to the same object. Let’s try this out.
Create a new hashtable and assign it to $foo.

PS (2) > $foo = @{
>> a = 1
>> b = 2
>> c = 3
>> }
>>
PS (3) > $foo
Key Value
--- -----
a 1
b 2
c 3

Now assign $foo to $bar and verify that it matches $foo as we expect.

PS (4) > $bar = $foo
PS (5) > $bar
Key Value
--- -----
a 1
b 2
c 3

Next assign a new value to the element "a" in $foo.

PS (6) > $foo.a = "Hi there"
PS (7) > $foo.a
Hi there

And let’s look at what happened to $bar:

PS (8) > $bar.a
Hi there
PS (9) > $bar
Key Value
--- -----
a Hi there
b 2
c 3

The change that was made to $foo has been reflected in $bar.
70 CHAPTER 3 WORKING WITH TYPES

There is still more to know about hashtables and how they work with operators, but
we’ll cover that in chapters 4 and 5. For now, we’ll move on to the next data type.

3.2.4 Collections: arrays and sequences

In the previous section, we talked about hashtables and hash literals. Now let’s talk
about the PowerShell syntax for arrays and array literals. Most programming languages
have some kind of array literal notation similar to the PowerShell hash literal notation,
where there is a beginning character sequence followed by a list of values, followed by
a closing character sequence. Here’s how array literals are defined in PowerShell:

They’re not. There is no array literal notation in PowerShell.
Yes, you read that correctly. There is no array literal notation in PowerShell. So how

exactly does this work? How do you define an inline array in a PowerShell script?
Here’s how to do it: instead of having array literals, there is a set of operations that cre-
ate collections as needed. In fact, collections of objects are created and discarded trans-
parently throughout PowerShell. If you need an array, one will be created for you. If
you need a singleton (or scalar) value, the collection will be unwrapped as needed.

Collecting pipeline output as an array

The most common operation resulting in an array in PowerShell is collecting the out-
put from a pipeline. When you run a pipeline that emits a sequence of objects and
assign that output to a variable, it automatically collects the elements into an array,
specifically into a .NET object of type [object[]].

But what about building a simple array in an expression? The simplest way to do
this is to use the comma operator (“,”). For example, at the command line, type

1,2,3

and you’ll have created a sequence of numbers. (See chapter 5 for more information
about using the comma operator.) When you assign that sequence to a variable, it is
stored as an array. Let’s assign these three numbers to a variable $a and look at the
type of the result.

PS (1) > $a = 1,2,3
PS (2) > $a.gettype().fullname
System.Object[]

As in the pipeline case, the result is stored in an array of type [object[]].

Array indexing

Let’s explore some of the operations that can be performed on arrays. As is commonly
the case, getting and setting elements of the array (array indexing) is done with square
brackets. The length of an array can be retrieved with the Length property.
BASIC TYPES AND LITERALS 71

PS (3) > $a.length
3
PS (4) > $a[0]
1

Note that arrays in PowerShell are origin-zero; that is, the first element in the array is
at index 0, not index 1. As the example showed, the first element of $a is in $a[0].

As with hashtables, changes are made to an array by assigning new values to
indexes in the array. In the following example, we’ll assign new values to the first and
third elements in $a.

PS (5) > $a[0] = 3.1415
PS (6) > $a
3.1415
2
3
PS (7) > $a[2] = "Hi there"
PS (8) > $a
3.1415
2
Hi there
PS (9) >

Looking at the output, we can see that elements of the array have been changed. Simple
assignment updates the element at the specified index.

Polymorphism in arrays

Another important thing to note from the previous example is that arrays are poly-
morphic by default. By polymorphic we mean that you can store any type of object in
an array. (A VBScript user would call these variant arrays). When we created the array,
we assigned only integers to it. In the subsequent assignments, we assigned a floating-
point number and a string. The original array was capable of storing any kind of
object. In formal terms, PowerShell arrays are polymorphic by default (though it is
possible to create type-constrained arrays).

Earlier we saw how to get the length of an array. What happens when we try to
assign to an element past the end of the array? The next example illustrates this.

PS (9) > $a.length
3
PS (10) > $a[4] = 22
Array assignment failed because index '4' was out of range.
At line:1 char:4
+ $a[4 <<<<] = 22
PS (11) >

Attempts to assign outside the bounds of an array will result in a range error. This is
because PowerShell arrays are based on .NET arrays and they are of fixed size. So how
can I add more elements to a PowerShell array if the underlying objects are fixed in
72 CHAPTER 3 WORKING WITH TYPES

size? In fact, this is easily done through array concatenation using the plus (“+”) or
plus-equals (“+=”) operators. Let’s add two more elements to the array from the previ-
ous example.

PS (11) > $a += 22,33
PS (12) > $a.length
5
PS (13) > $a[4]

33
PS (14) >

So the length of the array in $a is now five. The addition operation did add elements.
Here’s how this works:

• First PowerShell creates a new array large enough to hold the total number of
elements.

• Then it copies the contents of the original array into the new one.

• Finally it copies the new elements into the end of the array.

We didn’t add any elements to the original array after all. Instead we created a new,
larger one.

Arrays as reference types

This copying behavior has some interesting consequences. Let’s explore this further.
First create a simple array and look at the value. We’ll use string expansion here so
that the values in the variable are all displayed on one line.

PS (1) > $a=1,2,3
PS (2) > "$a"
1 2 3

Now assign $a to a new variable $b and check that $a and $b have the same elements.

PS (3) > $b = $a
PS (4) > "$b"
1 2 3

Next change the first element in $a.

PS (5) > $a[0] = "Changed"
PS (6) > "$a"
Changed 2 3

Yes, the first element in $a was changed. But what about $b? Let’s examine it now.

PS (7) > "$b"
Changed 2 3

It was also changed. As with hashtables, array assignment is done by reference. When
we assigned $a to $b, $b we got a copy of the reference to the array instead of a copy
of contents of the array. Let’s add a new element to $b.
BASIC TYPES AND LITERALS 73

PS (8) > $b += 4
PS (9) > "$b"
Changed 2 3 4

$b is now four elements long. As we’ve just discussed, due to the way array catenation
works, $b contains a copy of the contents of the array instead of a reference. If we
change $a now, it won’t affect $b. Let’s verify that:

PS (10) > $a[0] = "Changed again"
PS (11) > "$a"
Changed again 2 3
PS (12) > "$b"
Changed 2 3 4

We see that $b was in fact not changed. Conversely, changing $b should have no
effect on $a.

PS (13) > $b[0] = 1
PS (14) > "$a"; "$b"
Changed again 2 3
1 2 3 4
PS (15) >

Again, there was no change.
To reiterate, arrays in PowerShell, like arrays in other .NET languages, are refer-

ence types, not value types. When you assign them to a variable, you get another ref-
erence to the array, not another copy of the array.

Singleton arrays and empty arrays

Returning to array literals, we saw how to use the comma operator to build up an array
containing more than one element. You also use the comma operator as a prefix oper-
ator to create an array containing only one element. The next example shows this:

PS (1) > , 1
1
PS (2) > (, 1).length
1
PS (3) >

In the example we made an array containing a single element “1”.
How about empty arrays? The comma operator always takes an argument to work

on. Even using $null as an argument to the comma operator will result in a one-ele-
ment array containing the $null reference. Empty arrays are created through a spe-
cial form of sub-expression notation that uses the “@” symbol instead of the “$” sign
to start the expression. Here’s what it looks like:

PS (3) > @()
PS (4) > @().length
0
PS (5) >
74 CHAPTER 3 WORKING WITH TYPES

In the preceding example, we created an array of length 0. In fact, this notation is
more general. It takes the result of the expression it encloses and ensures that it is
always returned as an array. If the expression returns $null or a scalar value, it will be
wrapped in a one-element array. Given this behavior, the other solution to creating an
array with one element is:

PS (1) > @(1)
1
PS (2) > @(1).length
1
PS (3) > @(1)[0]
1
PS (4) >

That is, you place the value you want in the array in @(...) and you get an array back.
This notation is used when you don’t know if the command you’re calling is

going to return an array or not. By executing the command in this way, you are guar-
anteed to get an array back. Note that if what you’re returning is already an array, it
won’t be wrapped in a new array. Compare this to the use of the comma operator.

PS (1) > 1,2,3
1
2
3
PS (2) > (1,2,3).Length
3
PS (3) > (, (1,2,3)).Length
1
PS (4) > (@(1,2,3)).Length
3

On line 1 of the example, we created a regular array. On line 5, we get the length and
we see that it’s 3. Next on line 7, we apply the prefix operator to the array and then
get the length. The result now is only 1. This is because the unary comma operator
always wraps its arguments in a new array. Finally, on line 9, we use the @(...)
notation and then get the length. This time it remains three. The @(...) sequence
doesn’t wrap unless the object is not an array.

3.2.5 Type literals

In earlier sections, we showed a number of things that looked like [type]. These are
type literals. In PowerShell, you use type literals to specify a particular type. They can
be used as operators in a cast, as part of a variable declaration, or as an object itself.
Here’s an example of a cast using a type literal:

$i = [int] "123"

In this example, we are casting a string into a number, specifically an instance of prim-
itive .NET type System.Int32. In fact, we could use the longer .NET type name to
accomplish this:

$i = [System.Int32] "123"
BASIC TYPES AND LITERALS 75

It would be useful to try something more sophisticated. If we wanted to make this
into an array of integers, we would do

$i = [int[]][object[]] "123"

In this example, we’re not just casting the base type, we’re also changing it from a sca-
lar object to an array. Notice that we had to do this in two steps. In the first step, we
converted it into a collection but without changing the element type. In the second
step, we convert the types of the individual elements. This follows the general type
converter rule that no more than one conversion will be performed in a single step.
This rule makes it much easier to predict what any given conversion will do.

Type name aliases

Obviously, the shorter type name (or type alias as it’s known) is more conve-
nient. Table 3.4 lists all of the type aliases defined in PowerShell and the .NET
types they correspond to. Anything in the System.Management.Automation
namespace is specific to PowerShell and will be covered in later chapters in this
book. The other types are core .NET types and are covered in the Microsoft
Developers Network documentation.

Table 3.4 PowerShell type aliases and their corresponding .NET types

PowerShell Type Alias Corresponding .NET Type

[int] System.Int32

[int[]] System.Int32[]

[long] System.Int64

[long[]] System.Int64[]

[string] System.String

[string[]] System.String[]

[char] System.Char

[char[]] System.Char[]

[bool] System.Boolean

[bool[]] System.Boolean[]

[byte] System.Byte

[byte[]] System.Byte[]

[double] System.Double

[double[]] System.Double[]

[decimal] System.Decimal

[decimal[] System.Decimal[]

[float] System.Single

continued on next page
76 CHAPTER 3 WORKING WITH TYPES

The primary use of type literals is in performing type conversions. We’ll look at the
type conversion process in detail in the next section.

Accessing static members with type literals

The other operation type literals get used for is getting at static methods in .NET
classes. This will also be covered later on in detail, but here’s a quick taste.

You can use the Get-Member cmdlet to look at the members on an object. To
look at the static members, use the -static flag as shown:

PS (1) > [string] | get-member -static

 TypeName: System.String

Name MemberType Definition
---- ---------- ----------
Compare Method static System.Int32 Compare(String...
CompareOrdinal Method static System.Int32 CompareOrdinal...
Concat Method static System.String Concat(Object...
Copy Method static System.String Copy(String str)
Equals Method static System.Boolean Equals(Strin...
Format Method static System.String Format(String...
Intern Method static System.String Intern(String...
IsInterned Method static System.String IsInterned(St...
IsNullOrEmpty Method static System.Boolean IsNullOrEmpt...
Join Method static System.String Join(String s...
op_Equality Method static System.Boolean op_Equality(...
op_Inequality Method static System.Boolean op_Inequalit...
ReferenceEquals Method static System.Boolean ReferenceEqu...
Empty Property static System.String Empty {get;set;}

This will dump out all of the static members on the .NET System.String class. If
you want to call one of these methods, you need to use the “::” operator. Let’s use
the join method to join an array of string. First create the array:

[single] System.Single

[regex] System.Text.RegularExpressions.Regex

[array] System.Array

[xml] System.Xml.XmlDocument

[scriptblock] System.Management.Automation.ScriptBlock

[switch] System.Management.Automation.SwitchParameter

[hashtable] System.Collections.Hashtable

[psobject] System.Management.Automation.PSObject

[type] System.Type

[type[]] System.Type[]

Table 3.4 PowerShell type aliases and their corresponding .NET types (continued)

PowerShell Type Alias Corresponding .NET Type
BASIC TYPES AND LITERALS 77

PS (2) > $s = "one","two","three"

Then use the join method to join all of the pieces into a single string with plus signs
in between:

PS (3) > [string]::join(' + ', $s)
one + two + three
PS (4) >

Example: using advanced math functions

Another interesting use of static methods is with the math class. This class—[Sys-

tem.Math]—is a pure static class. You can’t actually create an instance of it—you
can only use the static methods on it. Again, let’s use the Get-Member cmdlet to
look at the methods. Here’s a truncated listing of the output you would see:

PS (1) > [math] | get-member -static

 TypeName: System.Math

Name MemberType Definition
---- ---------- ----------
Abs Method static System.Single Abs(Single va...
Acos Method static System.Double Acos(Double d)
Asin Method static System.Double Asin(Double d)
Atan Method static System.Double Atan(Double d)
Atan2 Method static System.Double Atan2(Double ...
 :
 :
Sqrt Method static System.Double Sqrt(Double d)
Tan Method static System.Double Tan(Double a)
Tanh Method static System.Double Tanh(Double v...
Truncate Method static System.Decimal Truncate(Dec...
E Property static System.Double E {get;}
PI Property static System.Double PI {get;}

As you can see, it contains a lot of useful methods and properties. For example, it
contains useful constants like Pi and e:

PS (2) > [math]::Pi
3.14159265358979
PS (3) > [math]::e
2.71828182845905
PS (4) >

There are also all of the trigonometric functions:

PS (4) > [math]::sin(22)
-0.00885130929040388
PS (5) > [math]::cos(22)
-0.999960826394637
PS (6) >
78 CHAPTER 3 WORKING WITH TYPES

As we’ve said, types in PowerShell provide tremendous power and breadth of capabil-
ities. In many cases, before rolling your own solution, it’s worth browsing the
Microsoft Developers Network documentation on the .NET libraries to see if there is
something you can use to solve your problems. Now that we’ve seen the types, let’s
look at how PowerShell does type conversions.

3.3 TYPE CONVERSIONS

In the previous section, we introduced type literals and the major datatypes used in
PowerShell. But how do all of these types work together? This is a critical question we
had to address in designing PowerShell. In shell languages, there is usually only string
data, so you never have to worry about things being of the wrong type. So how could
we achieve this “typeless” behavior in PowerShell? The answer was a comprehensive
system for handling type conversions automatically.

Automatic type conversion is the “secret sauce” that allows a strongly typed language
like PowerShell to behave like a typeless command-line shell. Without a comprehensive
type conversion system to map the output of one command to the input type required
by another command, PowerShell would be nearly impossible to use as a shell.

In the next few sections, we’ll go through an overview of how the type conversion
system works, then look at the conversion algorithm in detail. Finally we’ll look at
some of the special conversion rules that only apply when binding cmdlet parameters.

3.3.1 How type conversion works

Type conversions are used any time an attempt is made to use an object of one type in
a context that requires another type (such as adding a string to a number). Here’s a
good example: in the previous chapter, we talked about how parameters are bound to
cmdlets. The parameter binder uses the type conversion system heavily when trying
to bind incoming objects to a particular parameter. If the user has supplied a string
and the cmdlet requires a number, the system will quietly convert the source object to
the destination type as long as it’s not a destructive conversion. A destructive conver-
sion is one where the sense of the original object has been lost or distorted in some
significant way. With numbers, this typically means a loss of precision.

The type conversion facility is also surfaced directly to the shell user through cast
operations in the PowerShell language, as we mentioned in the previous section. In
PowerShell, you use types to accomplish many things that you’d do with methods or
functions in other languages. You use type literals as operators to convert (or cast)
one type of object to another. Here’s a simple example:

PS (1) > [int] "0x25"
37
PS (2) >

In this example, a string representing a hexadecimal number is converted into a
number by using a cast operation. A token specifying the name of a type in square
TYPE CONVERSIONS 79

brackets can be used as a unary operator that will try to convert its argument into the
desired type. These type cast operations can be composed—that is—several casts can
be chained together. Here’s an example of that type of composition. To get the
ordinal value for a char, you can do:

PS (2) > [int] [char]"a"
97

Notice that we first cast the string into a char and then into an int. This is neces-
sary because the simple conversion would try to parse the entire string as a number.
This only works for a string containing exactly one character, however. If you want to
convert an entire string, you need to use array types. Here’s what that looks like:

PS (3) > [int[]] [char[]] "Hello world"
72
101
108
108
111
32
119
111
114
108
100

The string was split into an array of characters, then that array of characters was con-
verted into an array of integers, and finally displayed as a list of decimal numbers. If
you wanted to see those numbers in hex, you’d have to use the –f format operator and
a format specifier string:

PS (4) > "0x{0:x}" -f [int] [char] "a"
0x61

And next, if you want to make a round trip, string to char to int to char to
string you can do:

PS (6) > [string][char][int] ("0x{0:x}" -f [int] [char] "a")
a

Finally, here’s a somewhat extreme example (for 2001 fans). We’ll take the string
“HAL” and increment each of the characters in the string by one. Let’s try it out.

PS (7) > $s = "HAL"
PS (8) > $OFS=""; [string] [char[]] ([int[]] [char[]] $s |
>> foreach {$_+1})
>>
IBM

Creepy, but cool (or just weird if you’re not a 2001 fan)! Moving closer to home, we
know that the Windows NT kernel was designed by the same person who designed
80 CHAPTER 3 WORKING WITH TYPES

the VMS operating system. Let’s prove that Windows NT (WNT) is just VMS plus
one. Here we go:

PS (9) > $s = "VMS"
PS (10) > $OFS=""; [string] [char[]] ([int[]] [char[]] $s |
>> foreach {$_+1})
>>
WNT

One final issue you may be wondering about: what is the $OFS (Output Field Separa-
tor) variable doing in the example? When PowerShell converts arrays to strings, it
takes each array element, converts that element into a string, and then concatenates
all the pieces together. Since this would be an unreadable mess, it inserts a separator
between each element. That separator is specified using the $OFS variable. It can be
set to anything you want, even the empty string. Here’s an interesting example. Say
we want to add the numbers from 1 to 10. Let’s put the numbers into an array:

PS (1) > $data = 1,2,3,4,5,6,7,8,9,10

Now convert them to a string:

PS (2) > [string] $data
1 2 3 4 5 6 7 8 9 10

As an aside, variable expansion in strings goes through the same mechanism as the
type converter, so you’ll get the same result:

PS (3) > "$data"
1 2 3 4 5 6 7 8 9 10

Now change $OFS to be the plus operator (“+”), and then display the data.

PS (4) > $OFS='+'
PS (5) > "$data"
1+2+3+4+5+6+7+8+9+10

Previously, the fields had been separated by spaces. Now they’re separated by plus
operators. This is almost what we need. We just have to find a way to execute this
string. PowerShell provides ability through the Invoke-Expression cmdlet. Here’s
how it works.

PS (6) > invoke-expression "$data"
55
PS (7) >

Ta-da! Note that this is not an efficient way to add a bunch of numbers. The looping
language constructs are a much better way of doing this.

Now let’s take a quick trip into the “too-much-information” zone and look in
detail at the process PowerShell uses to perform all of these type conversions.
TYPE CONVERSIONS 81

3.3.2 PowerShell’s type-conversion algorithm

In this section, we’ll cover the steps in the conversion process in painful detail—much
more than you’ll generally need to know in your day-to-day work. However, if you
really want to be an expert on PowerShell, this stuff ’s for you.

NOTE Type conversion is one of the areas of the PowerShell project that grew
“organically”. In other words, we sat down, wrote a slew of specifications,
threw them out, and ended up doing something completely different.
This is one of the joys of this type of work. Nice clean theory falls apart
when you put it in front of real people. The type conversion algorithm as
it exists today is the result of feedback from many of the early adopters
both inside Microsoft as well as outside. The betaplace community
helped us tremendously in this area.

In general, the PowerShell type conversions are separated into two major buckets:

• PowerShell Language Standard Conversions These are built-in conversions per-
formed by the engine itself. They are always processed first and consequently
cannot be overridden. This set of conversions is largely guided by the historical
behavior of shell and scripting languages, and is not part of the normal .NET
type conversion system.

• .NET-based custom converters This class of converters uses (and abuses in some
cases) existing .NET mechanisms for doing type conversion.

Table 3.5 lists the set of built-in language conversions that PowerShell uses. The con-
version process always starts with an object of a particular type and tries to produce a
representation of that object in the requested target type. The conversions are applied
in the order shown in table 3.5. Only one conversion is applied at a time. The Power-
Shell engine does not automatically chain conversions.

Table 3.5 PowerShell language standard conversions

Converting From To Target Type Result Description

$null [string] ““ (empty string)

[char] ‘`0’ (string containing a single character 0)

Any kind of
number

The object corresponding to 0 for the correspond-
ing numeric type.

[bool] $false

[PSObject] $null

Any other type
of object

$null

continued on next page
82 CHAPTER 3 WORKING WITH TYPES

If none of the built-in PowerShell language-specific conversions could be applied suc-
cessfully then the .NET custom converters are tried. Again, these converters are tried
in order until a candidate is found that will produce the required target type. This
candidate conversion is applied. If the candidate conversion throws an exception
(that is, a matching converter is found but it fails during the conversion process) then

Derived Class Base Class The original object is returned unchanged.

Anything [void] The object is discarded.

Anything [string] The PowerShell internal string converter is used.

Anything [xml] The original object is first converted into a string
and then into an XML Document object.

Array of type [X] Array of type [Y] PowerShell creates a new array of the target type,
then copies and converts each element in the
source array into an instance for the target array
type.

Non-array (singleton)
object

Array of type [Y] Creates an array containing one element and then
places the singleton object into the array, convert-
ing if necessary.

IDictionary [Hashtable] A new instance of System.Collections.Hash-
table is created, and then the members of the
source IDictionary are copied into the new object.

[string] [char[]] Converts the string to an array of characters.

[string] [regex] Constructs a new instance of a .NET regular
expression object.

[string] Number Converts the string into a number using the small-
est representation available that can accurately
represent that number. If the string is not purely
convertible (i.e., only contains numeric information)
then an error is raised.

[int] System.Enum Converts the integer to the corresponding enumer-
ation member if it exists. If it doesn’t, a conversion
error is generated.

Table 3.5 PowerShell language standard conversions (continued)

Converting From To Target Type Result Description
TYPE CONVERSIONS 83

no further attempt to convert this object will be made and the overall conversion
process will be considered to have failed.

NOTE Understanding these conversions depend upon a fair knowledge of the
.NET type conversion mechanisms. You’ll need to refer to additional doc-
umentation if you want to understand everything in table 3.6. On the other
hand, with the .NET docs, you can see exactly what steps are being applied
in the type conversion process.

Custom converters are executed in the order described in table 3.6.

Table 3.6 Custom Type Conversions

Converter type Description

PSTypeConverter A PSTypeConverter can be associated with a particular type using the
TypeConverterAttribute or the <TypeConverter> tag in the
types.ps1xml file. If the value to convert has a PSTypeConverter that
can convert to the target type, then it is called. If the target type has a
PSTypeConverter that can convert from values to convert, then it is called.

The PSTypeConverter allows a single type converter to work for N
different classes. For example, an enum type converter can convert a string
to any enum (there doesn’t need to be separate type to convert each
enum). Refer to the PowerShell SDK documentation for complete details
on this converter.

TypeConverter This is a CLR defined type that can be associated with a particular type
using the TypeConverterAttribute or the <TypeConverter> tag in
the types file. If the value to convert has a TypeConverter that can con-
vert to the target type then it is called. If the target type has a TypeCon-
verter that can convert from the source value, then it is called.

Note: The CLR TypeConverter does not allow a single type con-
verter to work for N different classes. Refer to the PowerShell SDK
documents and the Microsoft .NET framework documentation for
details on the TypeConverter class.

Parse Method If the value to convert is a string, and the target type has a Parse()
method, then that Parse() method is called. Parse() is a well-known
method name in the CLR world and is commonly implemented to allow
conversion of strings to other types.

Constructors If the target type has a constructor that takes a single parameter matching
the type of the value to convert, then this constructor is used to create a
new object of the desired type.

Implicit Cast Operator If the value to convert has an implicit cast operator that converts to the tar-
get type, then it is called. Conversely, if the target type has an implicit cast
operator that converts from value to convert’s type, then that is called.

Explicit Cast Operator If the value to covert has an explicit cast operator that converts to the tar-
get type then it is called. Alternatively, if the target type has an explicit cast
operator that converts from value to convert’s type then that is called.

IConvertable System.Convert.ChangeType is then called.
84 CHAPTER 3 WORKING WITH TYPES

This section covered the set of type conversions that PowerShell will apply in expres-
sions. In the parameter binder, however, are a few extra steps that are applied first.

3.3.3 Special type conversions in parameter binding

In this final section, we’ll go over the extra type conversion rules that are used in
parameter binding that haven’t already been covered. If these steps are tried and are
not successful, the parameter binder goes on to call the normal PowerShell type con-
verter code.

NOTE If at any time there is a failure doing the type conversion, an exception will
be thrown.

Here are the extra steps:

• If there is no argument for the parameter, then the parameter type must be
either a [bool] or the special PowerShell type SwitchParameter; otherwise
a parameter binding exception is thrown. If the parameter type is a [bool], it
is set to true. If the parameter type is a SwitchParameter, it is set to
SwitchParameter.Present.

• If the argument value is null and the parameter type is [bool], it is set to false.
If the argument value is null and the parameter type is SwitchParameter, it
is set to SwitchParameter.Present. Null can be bound to any other type,
so it just passes through.

• If the argument type is the same as the parameter type, the argument value is
used without any type conversion.

• If the parameter type is [object], the current argument value is used without
any coercion.

• If the parameter type is a [bool], then we use the PowerShell Boolean
IsTrue() method to determine whether the argument value should set the
parameter to true or false.

• If the parameter type is a collection, then the argument type must be encoded
into the appropriate collection type. Note, we will encode a scalar argument
type or a collection argument type to a target collection parameter type. We will
not encode a collection argument type into a scalar parameter type (unless that
type is System.Object or PSObject).

• If the argument type is a scalar, then we create a collection of the parameter type
(currently only arrays and IList are supported) of length 1 and set the argu-
ment value as the only value in the collection. If needed, the argument type is
converted to the element type for the collection using the same type coercion
process this section describes
TYPE CONVERSIONS 85

• If the argument type is a collection, we create a collection of the parameter type
with length equal to the number of values contained in the argument value.
Each value is then coerced to the appropriate element type for the new collec-
tion using the recursive application of this algorithm.

• If none of these steps worked, use the conversion in table 3.6. If those fail, then
the overall parameter binding attempt fails.

Once again, this is a level of detail that you don’t usually need to consider, but it’s use-
ful to know it’s available when you need it.

You now know everything you need to know about how types work on PowerShell.
Well, not quite everything. In the next two chapters, we’ll discuss how the PowerShell
operators build on this basic type foundation. But for now, we’re through!

3.4 SUMMARY

A solid understanding of the PowerShell type system will allow you to use Power-
Shell most effectively. By taking advantage of the built-in type system and conver-
sions, you can accomplish startlingly complex tasks with little code. In this chapter,
we covered the following topics:

• The PowerShell type system, how it works, and how you can use it.

• The basic PowerShell types and how they are represented in PowerShell script
(literals).

• Some of the more advanced types—hashtables and arrays.

• The use of type literals in type casts and as a way to call static methods.

• The type conversion process for language conversions, the pre-conversion steps
that are used by the parameter binder, and the relationship between the Power-
Shell types and the underlying .NET types.
86 CHAPTER 3 WORKING WITH TYPES

C H A P T E R 4

Operators and expressions

4.1 Arithmetic operators 89
4.2 The assignment operators 96
4.3 Comparison operators 101

4.4 The pattern matching
operators 107

4.5 Logical and bitwise operators 113
4.6 Summary 113
Operators, Mr. Rico! Millions of them!

 —Robert A. Heinlein, Starship Troopers, paraphrased

This chapter covers two of the basic elements of the PowerShell language: operators and
expressions. PowerShell has operators. Lots of operators—the full complement you
would expect in a conventional programming language and several more. In addition,
PowerShell operators are typically more powerful than the corresponding operators in
conventional languages such as C or C++. So, if you invest the time to learn what the
PowerShell operators are and how they work, in a single line of code you will be able
to accomplish tasks that would normally take a significant amount of programming.

Here’s an example of the kind of thing that can be done using just the PowerShell
operators. Say we have a file old.txt with the following text in it:

Hello there.
My car is red. Your car is blue.
His car is orange and hers is gray.
Bob's car is blue too.
Goodbye.
87

Our task is to copy this content to a new file, making certain changes. In the new file,
the word “is” should be replaced with “was”, but only when it’s in front of the words
“red” or “blue”. In most languages, this would require a fairly complex program. In
PowerShell, it takes exactly one line. Here’s the “script”. It uses the -replace oper-
ator along with output redirection and variable namespaces. The -replace operator is
decribed later in this chapter. Redirection and variable namespaces are features for
working with files that are covered in chapter 5.

For the impatient reader, the notation ${c:old.txt} says: return the
contents of the file “old.txt” from the current working directory on the C:
drive. In contrast, ${c:\old.txt} says get the file “old.txt” from the root
of the C: drive.

${c:old.txt} -replace 'is (red|blue)','was $1' > new.txt

After running this script, the content of new.txt looks like:

Hello there.
My car was red. Your car was blue.
His car is orange and hers is gray.
Bob's car was blue too.
Goodbye.

Operators and expressions

As you can see, only the second and fourth lines have been changed as desired. The
phrases “is red” and “is blue” have been changed to “was red” and “was blue”. The “is
orange” and “is gray” phrases weren’t changed. From this example, you can also see
that it’s possible to do quite a bit of work just with the operators.

In this example we used the -replace operator to do a regular expression
substitution on the strings in the file. In the replacement string after the
comma, the “$1” refers to the text matched by the part of the pattern in
parentheses. This notation is described in more detail in chapter 10, where
regular expressions are discussed at length.

One of the characteristics that makes PowerShell operators powerful is the fact that
they are polymorphic. In other words, they work on many types of objects. While this
is generally true in other object-based languages, in those languages the type of the
object defines the behavior of the operator. For example, the Integer class would
define an operator for adding a number to a class.

If you’re a C# or Visual Basic user, here’s something you might want to
know. In “conventional” NET languages, the operator symbols are mapped
to a specific method name on a class called op_<operatorName>. For
example, in C#, the plus operator “+” maps to the method
op_Addition(). While PowerShell is a .NET language, it takes a differ-
ent approach that is more consistent with dynamic scripting languages as
we’ll see in the following sections.

AUTHOR’S
NOTE

AUTHOR’S
NOTE

AUTHOR’S
NOTE
88 CHAPTER 4 OPERATORS AND EXPRESSIONS

In PowerShell, the interpreter primarily defines the behavior of the operators, at least
for common datatypes. Type-based polymorphic methods are only used as a backup.
By common types, we mean strings, numbers, hashtables, and arrays. This allows
PowerShell to provide more consistent behavior over this range of common objects
and also to provide higher-level behaviors than are provided by the objects them-
selves, especially when dealing with collections. We’ll cover these special behaviors in
the sections for each class of operator. (The following sections have many examples,
but the best way to learn this is to try the examples in PowerShell yourself.) Now let’s
get going and start looking at the operators.

4.1 ARITHMETIC OPERATORS

First we’ll cover the basic arithmetic operators. The polymorphic behavior of these
operators was touched on briefly in chapter 3, where the various type conversions
were covered. The operators themselves are listed in table 4.1.

In terms of behavior, the most interesting operators are + and *. We’ll cover these
operators in detail in the next two sections.

4.1.1 The addition operator

As mentioned previously, PowerShell itself defines the behavior of the + and * opera-
tors for numbers, strings, arrays, and hashtables. Adding or multiplying two numbers
produces a numeric result following the numeric widening rules. Adding two strings
performs string concatenation, resulting in a new string, and adding two arrays joins
the two arrays (array catenation), producing a new array. The interesting part occurs
when you mix operand types. In this situation, the type of the left operand determines
how the operation will proceed. We’ll look at how this works with addition first.

Table 4.1 The basic arithmetic operators In PowerShell

Operator Description Example Result

+ Add two values together. 2+4 6

“Hi “ + “there” “Hi There”

1,2,3 + 4,5,6 1,2,3,4,5,6

* Multiply 2 values. 2 * 4 8

“a” * 3 “aaa”

1,2 * 2 1,2,1,2

- Subtract one value from another. 6-2 4

/ Divide two values. 6/2 3

7/4 1.75

% Return the remainder from a division operation. 7%4 3
ARITHMETIC OPERATORS 89

The “left-hand” rule for arithmetic operators: The type of the left-hand op-
erand determines the type of the overall operation. This is an important
rule to remember.

If the left operand is a number, PowerShell will try to convert the right operand to a
number. Here’s an example. In the following expression, the operand on the left is a
number and the operand on the right is the string “123”.

PS (1) > 2 + "123"
125

Since the operand on the left is a number, according to the conversion rule, the oper-
and “123” must be converted into a number. Once the conversion is complete, the
numeric addition operation proceeds and produces the result 125 as shown. Con-
versely, in the next example, when a string is on the left side:

PS (2) > "2" + 123
2123

the operand on the right (the number 123) is converted to a string and appended to “2”
to produce a new string “2123”.

If the right operand can’t be converted into the type of the left operand then a
type conversion error will be raised, as we see in the next example:

PS (3) > 2 + "abc"
Cannot convert "abc" to "System.Int32". Error: "Input string was not
 in a correct format."
At line:1 char:4
+ 2 + <<<< "abc"

Since “abc” can’t be converted into a number, you receive a type conversion error. If
this had been done using the hex notation as discussed in section 3.3.2, everything
would fine:

PS (4) > 2 + "0xabc"
2750

Since “a”, “b”, and “c” are valid hex digits, the string “0xabc” converts into the num-
ber 2748 and is then added to 2, giving 2750.

The next PowerShell-defined polymorphic behavior for + involves arrays or col-
lections. If the operand on the left is an array or collection, the operand on the right
will be appended to that collection. If the right operand is a scalar value, it will be
added to the array as-is. If it’s already an array (or any type of enumerable collection),
it will be appended to the collection.

At this point, it’s probably a good idea to reiterate how array catenation is done
in PowerShell. Because the underlying .NET array objects are of fixed size (as dis-
cussed in section 3.3.4), catenation is accomplished by creating a new array of type
[object[]] and copying the elements from the operands into this new array. In
the process of creating the new array, any type constraint on the original arrays will

AUTHOR’S
NOTE
90 CHAPTER 4 OPERATORS AND EXPRESSIONS

be lost. For example, if the left operand is [int[]], that is, an array of type [int],
and you add a non-numeric string to it, a new array will be created that will be of
type [object[]], which can hold any type of object. Let’s look at an example.
First create an integer array.

PS (1) > $a = [int[]] (1,2,3,4)
PS (2) > $a.gettype().fullname
System.Int32[]

Now let’s do some assignments. First assign an integer.

PS (3) > $a[0] = 10

This works without error. Next try it with a string that can be converted into an inte-
ger. We’ll use the hex string mentioned earlier.

PS (4) > $a[0] = "0xabc"

This also works fine. Finally, let’s try assigning a non-numeric string to the array
element.

PS (5) > $a[0] = "hello"
Array assignment to [0] failed: Cannot convert "hello" to
"System.Int32". Error: "Input string was not in a correct format.".
At line:1 char:4
+ $a[0 <<<<] = "hello"

This fails, as you might expect. An array of type [int[]] can only hold integers.
Since "hello" can’t be converted into an integer; we get the type conversion error
shown. So far, so good. Now let’s do an array catenation.

PS (6) > $a = $a + "hello"

And now try the assignment that failed previously.

PS (7) > $a[0] = "hello"
PS (8) > $a
hello
2
3
4
hello

This time the assignment succeeds without error. What happened here? Let’s look at
the type of the array now.

PS (9) > $a.gettype().fullname
System.Object[]

When the new, larger array was created to hold the combined elements, it was created
as type [object[]], which is not type-constrained. Since it can hold any type of
object, the assignment proceeded without error.
ARITHMETIC OPERATORS 91

Finally, let’s look at how addition works with hashtables. Similar to arrays, addi-
tion of hashtables creates a new hashtable and copies the elements of the original tables
into the new one. The left elements are copied first, then the elements from the right
operand are copied. (This only works if both operands are hashtables.) If there are any
collisions, that is, if the keys of any of the elements in the right operand match the keys
of any element in the left operand, then an error will occur saying that the key already
exists in the hashtable. (This was an implementation decision, by the way; we could
have had the new element overwrite the old one, but the consensus was that generat-
ing an error message is usually the better thing to do.)

PS (1) > $left=@{a=1;b=2;c=3}
PS (2) > $right=@{d=4;e=5}
PS (3) > $new = $left + $right
PS (4) > $new

Key Value
--- -----
d 4
a 1
b 2
e 5
c 3

The new hashtable is of type System.Collections.Hashtable:

PS (5) > $new.GetType().FullName
System.Collections.Hashtable

The table is created in such a way that the strings that are used as keys are compared
in a case-insensitive way.

This completes our discussion of the behavior of the addition operator. We cov-
ered how it works with numbers, strings, hashtables, and arrays. Now that we’re fin-
ished with addition, let’s move on to the multiplication operator.

4.1.2 The multiplication operator

As with addition, PowerShell defines multiplication behavior for numbers, strings, and
arrays. (We don’t do anything special for hashtables for multiplication.) Multiplying
numbers works as expected and follows the widening rules discussed in chapter 3. In
fact, the only legal right-hand operand for multiplication is a number. If the operand
on the left is a string then that string is repeated the number of times specified in the
left operand. Let’s try this out. We’ll multiply the string “abc” by 1, 2, then 3:

PS (1) > "abc" * 1
abc
PS (2) > "abc" * 2
abcabc
PS (3) > "abc" * 3
abcabcabc
92 CHAPTER 4 OPERATORS AND EXPRESSIONS

The results are “abc”, “abcabc”, and “abcabcabc”, respectively. What about multiply-
ing by zero?

PS (4) > "abc" * 0

PS (5) >

The result appears to be nothing—but which “nothing”—spaces, empty string, or
null? The way things are displayed, you can’t tell by looking. Here’s how to check.
First check the type of the result:

PS (5) > ("abc" * 0).gettype().fullname
System.String

We see that it’s a string, not $null. But it could still be spaces, so we need to check
the length:

PS (6) > ("abc" * 0).length
0

And, since the length is zero, we can tell that it is in fact an empty string.
Now let’s look at how multiplication works with arrays. Since multiplication

applied to strings repeats the string, logically you would expect that multiplication
applied to arrays should repeat the array, which is exactly what it does. Let’s look at
some examples of this. First create an array with three elements:

PS (1) > $a=1,2,3
PS (2) > $a.length
3

Now multiply it by 2:

PS (3) > $a = $a * 2
PS (4) > $a.length
6

The length of the new array is 6. Looking at the contents of the array (using variable
expansion in strings to save space) we see that it is “1 2 3 1 2 3”—the original array
doubled.

PS (5) > "$a"
1 2 3 1 2 3

Now multiply the new array by three:

PS (6) > $a = $a * 3

And check that the length is now 18.

PS (7) > $a.length
18

It is, so looking at the contents:

PS (8) > "$a"
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
ARITHMETIC OPERATORS 93

we see that it is six repetitions of the original three elements.
As with addition, first a new larger array is created during multiplication, then the

component elements are copied into it. This has the same issue that addition had,
where the new array is created without type constraints. Even if the original array
could only hold numbers, the new array can hold any type of object.

4.1.3 Subtraction, division, and the modulus operator

Addition and multiplication are the most interesting of the arithmetic operators in
terms of polymorphic behavior, but let’s go over the remaining operators. Subtrac-
tion, division, and the modulus (%) operators are only defined for numbers by Pow-
erShell. (Modulus returns the remainder from a division operation.) Again, as with all
numeric computations, the widening rules for numbers are obeyed. Since, for the
basic types (string, number), these operations are only defined for numbers, if either
operand is a number (not just the left-hand operand) then an attempt will be made to
convert the other operand into a number as well, as shown in the following:

PS (1) > "123" / 4
30.75
PS (2) > 123 / "4"
30.75
PS (3) >

In the first example, the string “123” is converted into a number. In the second
example, the string “4” will be converted into a number.

Here is an important characteristic about how division works in PowerShell
that you should keep in mind. Integer division underflows into floating
point (technically System.Double). This means that 5 divided by 4 in
PowerShell results in 1.25 instead of 1 as it would in C#. If you want to
round the decimal part to the nearest integer, simply cast the result into
[int]. You also need to be aware that PowerShell uses what’s called
“Banker’s Rounding” when converting floating point numbers into
integers. Banker’s rounding rounds .5 up sometimes, and down sometimes.
The convention is to round to the nearest even number, so that both 1.5
and 2.5 round to 2, and 3.5 and 4.5 both round to 4.

If neither operand is a number, the operation is undefined and you’ll get an error as
shown:

PS (3) > "123" / "4"
Method invocation failed because [System.String] doesn't contain
a method named 'op_Division'.
At line:1 char:8
+ "123" / <<<< "4"
PS (4) >

Take note of this particular error message, though. PowerShell has no built-in defini-
tion for this operation, so as a last step it looks to see whether the type of the left

AUTHOR’S
NOTE
94 CHAPTER 4 OPERATORS AND EXPRESSIONS

operand defines a method for performing the operation. In fact, PowerShell looks for
the op_<operation> methods on the left operand if the operation is not one of
those defined by PowerShell itself. This allows the operators to work on types such as
System.Datetime (the .NET representation of dates) even though there is no spe-
cial support for these types in PowerShell.

Here’s an example. In the following, we want to find the total number of days
between January 1, 2006, and February 1, 2006. We can create objects representing
these dates by casting strings into DateTime objects. Once we have these objects, we
can convert them:

PS (1) > ([datetime] "2006-2-1" - [datetime]"2006-1-1").TotalDays
31

For those of you with children, here’s a more useful example. Jeffrey Snover, the
architect of PowerShell tells a story about his daughter:

My daughter loves Christmas. She often asks me, “How long is it till Christmas?”
The problem with that is that I’m one of those people that can barely remember
what year it is, much less the date. Well, it is one thing to be a flawed person and
it’s another thing to disappoint your daughter. PowerShell to the rescue! Here is a
little date math routine I wrote to help me out:

function tillXmas ()
{
 $now = [DateTime]::Now
 [Datetime]([string] $now.Year + "-12-25") - $Now
}

PS> tillxmas

Days : 321

Hours : 18
Minutes : 8
Seconds : 26
Milliseconds : 171
Ticks : 277997061718750
TotalDays : 321.755858470775
TotalHours : 7722.14060329861
TotalMinutes : 463328.436197917
TotalSeconds : 27799706.171875
TotalMilliseconds : 27799706171.875

Thanks to PowerShell, I can tell my daughter how many seconds to go till Xmas!
Now if I can only get her to stop asking me in the car.

To take a look at the operator methods defined for System.DateTime, we can use
the Getmembers() method. Here’s a partial listing of the operator methods defined.
We’re using the PowerShell Select-String cmdlet to limit what gets displayed to
only those methods whose names contain the string “op_”:
ARITHMETIC OPERATORS 95

PS (5) > [datetime].getmembers()| foreach{"$_"}| select-string op_
System.DateTime op_Addition(System.DateTime, System.TimeSpan)
System.DateTime op_Subtraction(System.DateTime, System.TimeSpan)
System.TimeSpan op_Subtraction(System.DateTime, System.DateTime)

As you can see, not all of the arithmetic operator methods are defined. In fact, there
are no methods defined for any operations other than addition and subtraction. If
you try to divide a DateTime object by a number, you’ll get the same error we saw
when we tried to divide two strings:

PS (4) > [datetime] "1/1/2006" / 22
Method invocation failed because [System.DateTime] doesn't contain
a method named 'op_Division'.
At line:1 char:24
+ [datetime] "1/1/2006" / <<<< 22
PS (5) >

The error occurred because PowerShell was looking for an op_Division() on the
object on the left. Since it didn’t find one, the operation failed.

That’s it for the arithmetic operations. However, now that we know how to do
arithmetic, it’s not very interesting if we can’t save the results. Next we need to talk
about the assignment operators.

4.2 THE ASSIGNMENT OPERATORS

In this section we’ll cover the assignment operators, which are listed in table 4.2. As
you can see, along with simple assignment, PowerShell supports the compound oper-
ators that are found in C-based languages. These compound operators retrieve,
update, and reassign a variable.

In table 4.2, for each of the compound assignment operators, the third column
shows the equivalent decomposed operation. Of course, the arithmetic parts of the
compound arithmetic/assignment operators follow all of the rules for the arithmetic

Table 4.2 PowerShell assignment operators

Operator Example Equivalent Description

= $a= 3 Sets the variable to the specified value.

+= $a += 2 $a = $a + 2 Performs the addition operation in the existing value, then
assigns the result back to the variable.

-= $a -= 13 $a = $a – 13 Performs the subtraction operation in the existing value,
then assigns the result back to the variable.

*= $a *= 3 $a = $a * 3 Multiplies the value of a variable by the specified value or
appends to the existing value.

/= $a /= 3 $a = $a / 3 Divides the value of a variable by the specified value.

%= $a %= 3 $a = $a % 3 Divides the value of a variable by the specified value and
assigns the remainder (modulus) to the variable.
96 CHAPTER 4 OPERATORS AND EXPRESSIONS

operators described in the previous section. The formal syntax for an assignment
expression is:

<lvalueList> <assignmentOperator> <pipeline>
<lvalueList> := <lvalue> [, <lvalue>] *
<lvalue> := <variable> | <propertyReference> | <arrayReference>

One interesting thing to note from this syntax is that multiple assignments are
allowed. For example, the expression

$a,$b,$c = 1,2,3,4

is a perfectly legal statement. It says “assign 1 to $a, assign 2 to $b, and assign the
remaining elements 3 and 4 of the list to $c. Multiple assignments can be used to
greatly simplify certain types of operators as we’ll see in the next section.

4.2.1 Multiple assignments

Multiple assignment works only with the basic assignment operator. You can’t use it
with any of the compound operators. It can, however, be used with any type of
assignable expression such as an array element or property reference. Here’s a quick
example where multiple assignment is particularly useful. The canonical pattern for
swapping two variables is conventional languages is

$temp = $a
$a = $b
$b = $temp

This takes three lines of code and requires you to use a temporary variable. Here’s
how to do it using multiple assignments in PowerShell:

$a,$b = $b,$a

It’s simple, straightforward, and clean—only one line of code with no temporary vari-
able to worry about. Here’s a more interesting example. The Fibonacci sequence is a
sequence of numbers where each element is defined as the sum of the previous two
numbers in the sequence. It looks like:

1 1 2 3 5 8 13 21 …

The Fibonacci sequence is an oddly popular bit of mathematics. It shows
up in books, movies, and seashells. In the West, it was first studied by Le-
onardo of Pisa a.k.a. Fibonacci. He used this sequence to describe how rab-
bits multiply. Rabbits are not good at math, so it wasn’t very accurate. The
sequence also describes the progression of the spiral found in some shells.
Mollusks are better at math than rabbits, apparently.

Here’s how to generate this sequence in PowerShell using multiple assignments:

AUTHOR’S
NOTE
THE ASSIGNMENT OPERATORS 97

PS (53) > $c=$p=1; while ($c -lt 100) { $c; $c,$p = ($c+$p),$c }
1
2
3
5
8
13
21

34
55
89

In this example, we begin by initializing the two variables $c (current) and $p (previ-
ous) to 1. Then we loop while $c is less than 100. $c contains the current value in
the sequence, so we emit that value. Next we have the double assignment, where $c
becomes the next element in the sequence and $p becomes the current (now previ-
ous) value in the sequence. So far, we’ve seen that using multiple assignments can
simplify basic operations such as swapping values. However, when combined with
some of PowerShell’s other features, you can do much more interesting things than
that. We’ll see this in the next section.

4.2.2 Multiple assignments with type qualifiers

This is all interesting, but let’s look at a more practical example. Say we are given a
text file containing some data that we want to parse into a form we can work with.
First let’s look at the data file:

quiet 0 25
normal 26 50
loud 51 75
noisy 75 100

This file contains a set of sound level descriptions. The format is a string describing
the level, followed by two numbers describing the upper and lower bounds for these
levels out of a possible 100. We want to read this information into a data structure so
we can use it to categorize a list of sounds later on. Here’s the fragment of PowerShell
code needed to do this:

PS (2) > $data = get-content data.txt | foreach {
>> $e=@{}
>> $e.level, [int] $e.lower, [int] $e.upper = $_.split()
>> $e
>> }
>>

We start by using the Get-Content cmdlet to write the data into a pipeline. Each
line of the file is sent to the Foreach-Object cmdlet to be processed. The first
thing we do in the body of the foreach cmdlet is initialize a hashtable in $e to hold
the result. We take each line stored in the $_ variable and call the string split()
98 CHAPTER 4 OPERATORS AND EXPRESSIONS

method on it. This splits the string into an array at each space character in the string.
For example, the string

"quiet 0 25"

becomes an array of three strings

"quiet","0","25"

Then we assign the split string to three elements of the hashtable: $e.level,
$e.lower, and $e.upper. But there’s one more thing we want to do. The array
being assigned is all strings. For the upper and lower bounds, we want numbers, not
strings. To do this, we add a cast before the assignable element. This causes the value
being assigned to first be converted to the target type. The end result is that the upper
and lower fields in the hashtable are assigned numbers instead of strings. Finally, note
that the result of the pipeline is being assigned to the variable $data, so we can use it
later on.

Let’s look at the result of this execution. Since there were four lines in the file,
there should be four elements in the target array.

PS (3) > $data.length
4

We see that there are. Now let’s see if the value stored in the first element of the array
is what we expect. It should be the “quiet” level.

PS (4) > $data[0]
Key Value
--- -----
upper 25
level quiet
lower 0

It is. Finally, let’s verify that the types were properly converted.

PS (5) > $data[0].level
quiet
PS (6) > $data[0].lower
0
PS (7) > $data[0].upper
25
PS (8) > $data[0].level.gettype().fullname
System.String
PS (9) > $data[0].lower.GetType().fullname
System.Int32
PS (10) > $data[0].upper.GetType().fullname
System.Int32

Again we use the GetType() method to look at the types, and we can see that the level
description field is a string and that the two bounds fields are integers, as expected.
THE ASSIGNMENT OPERATORS 99

In this last example, we’ve seen how array assignment can be used to perform
sophisticated tasks in only a few lines of code. By now, you should have a good sense
of the utility of assignments in processing data in PowerShell. There’s just one last
point to cover about assignment expressions, which we’ll cover in the next section.

4.2.3 Assignment operations as value expressions

The last thing you need to know about assignment expressions is that they are, in
fact, expressions. This means that you can use them anywhere you’d use any other
kind of expression. This lets you initialize multiple variables at once. Let’s initialize
$a, $b, and $c to the number 3.

PS (1) > $a = $b = $c = 3

Now verify that the assignments worked:

PS (2) > $a, $b, $c
3
3
3

Yes, they did. So what exactly happened? Well, it’s the equivalent of the following
expression:

PS (3) > $a = ($b = ($c = 3))

That is, $c is assigned 3. The expression ($c = 3) returns the value 3, which is in
turn assigned to $b, and the result of that assignment (also 3) is finally assigned to $a
so once again, all three variables end up with the same value:

PS (4) > $a, $b, $c
3
3
3

Now, since we can “intercept” the expressions with parentheses, we can perform addi-
tional operations on the values returned from the assignment statements before this
value is bound in the outer assignment. Here’s an example that does this:

PS (5) > $a = ($b = ($c = 3) + 1) + 1

In this expression, $c gets the value 3. The result of this assignment is returned, and 1
is added to that value, giving 4, which is then assigned to $b. The result of this second
assignment also has 1 added to it, so $a is finally assigned 5, as shown in the output:

PS (6) > $a, $b, $c
5
4
3

Now we have assignment and arithmetic operators covered, but a language isn’t much
good if you can’t compare things, so let’s move on to the comparison operators.
100 CHAPTER 4 OPERATORS AND EXPRESSIONS

4.3 COMPARISON OPERATORS

In this section, we’ll cover what the comparison operators are in PowerShell and how
they work. We’ll cover how case sensitivity factors into comparisons and how the
operators work for scalar values and for collections of values.

PowerShell has a sizeable number of comparison operators, in large part because
there are case-sensitive and case-insensitive versions of all of the operators. These are
listed in table 4.3.

In table 4.3, you can see that for each operator there is a base or unqualified operator
form, like -eq and its two variants -ceq and -ieq. The “c” variant is case-sensitive
and the “i” variant is case-insensitive. This raises the obvious question, what is the
behavior for the base operators with respect to case? The answer is that the unquali-
fied operators are case-insensitive. All three variants are provided to allow script
authors to make their intention clear—that they really meant a particular behavior
rather than accepting the default.

Let’s talk about the most contentious design decision in the PowerShell
language. And the winner is: why the heck did we not use the conventional
symbols for comparison like “>”, “>=”, “<”, “<=”, “==”, and “!=” ? My, this
was a touchy issue. The answer is that the “>” and “<” characters are used
for output redirection. Since PowerShell is a shell and all shell languages in
the last 30 years have used “>” and “<” for I/O redirection, people expected
that PowerShell should do the same. During the first public beta of Pow-
erShell, this topic generated discussions that went on for months. We
looked at a variety of alternatives, such as modal parsing where sometimes
“>” meant greater-than and sometimes it meant redirection. We looked at
alternative character sequences for the operators like “:>” or “->”, either for

Table 4.3 PowerShell comparison operators

Operator Description Example Result

-eq –ceq –ieq Equals 5 –eq 5 $true

-ne –cne –ine Not equals 5 –ne 5 $false

-gt –cgt –igt Greater than 5 –gt 3 $true

-ge –cge –ige Greater than or equal 5 –ge 3 $true

-lt –clt –ilt Less than 5 –lt 3 $false

-le –cle -ile Less than or equals 5 –le 3 $false

-contains
-ccontains
-icontains

The collection on the left side contains
the value specified on the right side.

1,2,3 –contains 2 $true

-notcontains
-cnotcontains
-inotcontains

The collection on the left side does not
contain the value on the right side.

1,2,3 –notcontains 2 $false

AUTHOR’S
NOTE
COMPARISON OPERATORS 101

redirection or comparison. We did usability tests and held focus groups,
and in the end, settled on what we had started with. The redirection oper-
ators are “>” and “<”, and the comparison operators are taken from the
UNIX test(1) command. We expect that, since these operators have a 30-
year pedigree, they are adequate and appropriate to use in PowerShell. (We
also expect that people will continue to complain about this decision,
though hopefully not for 30 more years.)

Now that we’re clear on the case-sensitivity issue, let’s move on to discuss the seman-
tics of the comparison operators. We begin in the next section by describing their
operation on scalar datatypes, then in the subsequent section, we’ll describe how they
work with collections of objects.

4.3.1 Scalar comparisons

In this section, we’ll cover how the comparison operators work with scalar objects. In
particular, we’ll cover their polymorphic behavior with the scalar data types.

Basic comparison rules

As with the assignment operators, the behavior of the comparison operators is signifi-
cantly affected by the type of the left operand. If you are comparing a number and a
string, the string will be converted into a number and a numerical comparison will be
done. If the left operand is a string, the right operand will be converted to a string,
and the results compared as strings. Let’s look through some examples. First a simple
numeric comparison:

PS (26) > 01 -eq 001
True

Because we’re doing a numeric comparison, the leading zeros don’t matter and the
numbers compare as equal. Now let’s try it when the right operand is a string.

PS (28) > 01 -eq "001"
True

Following the rule, the right operand is converted from a string into a number, then
the two are compared and are found to be equal. Finally, try the comparison when
the left operand is a string.

PS (27) > "01" -eq 001
False

In this example, the right operand is converted to a string, and consequently they no
longer compare as equal. Of course you can always use casts to force a particular
behavior. In the next example, let’s force the left operand to be a number:

PS (29) > [int] "01" -eq 001
True

And, because we forced a numeric comparison, once again they are equal.
102 CHAPTER 4 OPERATORS AND EXPRESSIONS

Type conversions and comparisons

As with any PowerShell operator that involves numbers, when comparisons are done in
a numeric context, the widening rules are applied. This can produce somewhat unex-
pected results. Here’s an example that illustrates this. In the first part of the example,
we use a cast to convert the string “123” into a number. Once we’re doing the conver-
sion in a numeric context, the numbers get widened to double since the right operand
is a double; and since 123.4 is larger than 123.0, the -lt operator returns true.

PS (37) > [int] "123" -lt 123.4
True

Now try it using a string as the right operand. The cast forces the left operand to be
numeric; however, the right operand is not yet numeric. It is converted to the
numeric type of the left operand, which is [int], not [double]. This means that
the value is truncated and the comparison now returns false.

PS (38) > [int] "123" -lt "123.4"
False

Finally, if we force the context to be [double] explicitly, the comparison again
returns true.

PS (39) > [double] "123" -lt "123.4"
True

While all these rules seem complicated (and, speaking as the guy who implemented
them, they are), the results are generally what you would intuitively expect. This sat-
isfies the principle of least astonishment. So most of the time you don’t need to worry
about the specifics and can just let the system take care of the conversions. It’s only
when things don’t work as expected that you really need to understand the details of
the conversion process. To help you debug cases where this happens, PowerShell pro-
vides a type conversion tracing mechanism to help you track down the problems.
How to use this debugging feature is described in chapter 7. Finally, you can always
apply a set of casts to override the implicit behavior and force the results you want.

Comparisons and case-sensitivity

Next let’s look at the “i” and “c” versions of the comparison operators—the case-
sensitive and case-insensitive versions. Obviously, case sensitivity only applies to
strings. All of the comparison operators have both versions. For example, the -eq
operator has the following variants:

PS (1) > "abc" -eq "ABC"
True
PS (2) > "abc" -ieq "ABC"
True
PS (3) > "abc" -ceq "ABC"
False
COMPARISON OPERATORS 103

The default case -eq is case-insensitive, as is the explicitly case-insensitive operator
-ieq, so in the example, “abc” and “ABC” compare as equal. The -ceq operator is
case-sensitive, so with this operator, “abc” and “ABC” compare as not equal.

The final item to discuss with scalar comparisons is how things that aren’t strings
and numbers are compared. In this case, the .NET comparison mechanisms are used.
If the object implements the .NET IComparable interface, then that will be used. If
not, and if the object on the left side has a .Equals() method that can take an
object of the type of the right operand, this is used. If there is no direct mechanism
for comparing the two an attempt will be made to convert the right operand into an
instance of the type of the left operand, then PowerShell will try to compare the
resulting objects. This lets you compare things such as [datetime] objects as
shown in the next example:

PS (4) > [datetime] "1/1/2006" -gt [datetime] "1/1/2005"
True
PS (5) > [datetime] "1/1/2006" -gt [datetime] "2/1/2006"
False
PS (6) >

Of course, not all objects are directly comparable. For example, there is no direct way
to compare a System.DateTime object to a System.Diagnostics.Process
object.

PS (6) > [datetime] "1/1/2006" -gt (get-process)[0]
The '-gt' operator failed: Cannot convert
"System.Diagnostics.Process (ALCXMNTR)" to "System.DateTime"..
At line:1 char:26
+ [datetime] "1/1/2006" -gt <<<< (get-process)[0]
PS (7) >

In the example, since there is no direct way to compare a DateTime object to a Pro-
cess object, the next step is to try to convert the Process object into an instance of
DateTime. This also failed; and, as this is the last step in the comparison algorithm,
an error message is produced explaining what happened. This is where a human has to
intervene. The obvious field on a Process object to compare is the StartTime of
the process. We’ll use the property notation to do this.

PS (7) > [datetime] "1/1/2006" -gt (get-process)[0].StartTime
False
PS (8) > [datetime] "1/1/2007" -gt (get-process)[0].StartTime
True

In this expression, we’re looking to see whether the first element in the list of Pro-
cess objects had a start time greater than the beginning of this year (no) and
whether it had a start time from before the beginning of next year (obviously true).
You can use this approach to find all the processes on a computer that started today,
as shown:

get-process | where {$_.starttime -ge [datetime]::today}
104 CHAPTER 4 OPERATORS AND EXPRESSIONS

The Get-Process cmdlet returns a list of all of the processes on this computer, and
the where cmdlet selects those processes where the StartTime property of the pro-
cess is greater than or equal to today.

The where used in the previous example is an alias for the Where-
Object cmdlet, which is described in chapter 6.

This completes our discussion of the behavior of the comparison operators with sca-
lar data. We paid a lot of attention to the role types play in comparisons, but so far
we’ve avoided discussing collection types—lists, arrays and so on. We’ll get to that in
the next section.

4.3.2 Using comparison operators with collections

In this section, we focus on the behavior of the comparison operators when they are
used with collections of objects.

Basic comparison operations involving collections

Here is the basic behavior. If the left operand is an array or collection, then the com-
parison operation will return the elements of that collection which match the right
operand. Let’s illustrate the rule with an example:

PS (1) > 1,2,3,1,2,3,4 -eq 2
2
2

This expression searches the list of numbers on the left side and returns those that
match—the two “2”s. And of course this works with strings as well:

PS (2) > "one","two","three","two","one" -eq "two"
two
two

When processing the array, the scalar comparison rules are used to compare each ele-
ment. In the next example, the left operand is an array containing a mix of numbers
and strings, and the right operand is the string “2”.

PS (3) > 1,"2",3,2,"1" -eq "2"
2
2

Again, it returns the two “2”s. Let’s look at some more examples where we have lead-
ing zeros in the operands. In the first example:

PS (4) > 1,"02",3,02,"1" -eq "2"
2

we only return the number 2 because 2 and “02” compare equally in a numeric con-
text; however “2” and “02” are different in a string context. The same thing happens
in the next example.

AUTHOR’S
NOTE
COMPARISON OPERATORS 105

PS (5) > 1,"02",3,02,"1" -eq 2
2

When the elements are compared as numbers, they match. When compared as
strings, they don’t match because of the leading zero. Now one final example:

PS (6) > 1,"02",3,02,"1" -eq "02"
02
2

Now they both match. In a numeric context, the leading zeros don’t matter and in the
string context, the strings match.

The containment operators

All of the comparison operators we’ve discussed so far return the matching elements
from the collection. While this is extremely useful, there are times when you just
want to find out whether an element is there or not. This is what the -contains
and -notcontains operators are for. They return true if the set contains the ele-
ment you’re looking for instead of returning the matching elements. Let’s redo the
last example, but with -contains this time.

PS (1) > 1,"02",3,02,"1" -contains "02"
True
PS (2) > 1,"02",3,02,"1" -notcontains "02"
False

Now, instead of returning 02 and 2, we just return a single Boolean value. Since all
values in PowerShell can be converted into a Boolean value, this doesn’t seem as if it
would particularly matter, and usually it doesn’t. The one case where it does matter is
if the matching set of elements is something that is false. This even includes Bool-
eans. This is easiest to understand with an example:

PS (3) > $false,$true -eq $false
False
PS (4) > $false,$true -contains $false
True

In the first command, -eq searches the list for $false, finds it, then returns the
matching value. However, since the matching value was literally $false, a successful
match looks as if it failed. When we use the -contains operator in the expression,
we get the result we’d expect, which is $true. The other way to work around this
issue is to use the @(..) construction and the Count property. This looks like:

PS (5) > @($false,$true -eq $false).count
1

The @(...) sequence forces the result to be an array and then takes the count of
the results. If there are no matches the count will be zero, which is equivalent to
$false. If there are matches the count will be nonzero, equivalent to true. There can
106 CHAPTER 4 OPERATORS AND EXPRESSIONS

also be some performance advantages to -contains, since it stops looking on the
first match instead of checking every element in the list.

NOTE The @(..) construction is described in detail in chapter 5.

In this section, we covered all of the basic comparison operators. We addressed the
issue of case-sensitivity in comparisons, and we covered the polymorphic behavior of
these operations, first for scalar data types. then for collections. Now let’s move on to
some of the more advanced operators.

One of the hallmark features of dynamic languages is good support for pattern
matching. In the next section, we’ll cover how PowerShell incorporates pattern
matching operators into the language.

4.4 THE PATTERN MATCHING OPERATORS

In this section, we cover the pattern matching operators in PowerShell. Along with
the basic comparison operators, PowerShell has a number of pattern matching opera-
tors. These operators work on strings, matching and manipulating them using two
types of patterns—wildcard expressions and regular expressions.

4.4.1 Wildcard patterns

You usually find wildcard patterns in a shell for matching file names. For example,
the following command

dir *.txt

finds all of the files ending in .txt. Similarly,

cp *.txt c:\backup

will copy all the text files into the directory c:\backup. In these examples, the “*”
matches any sequence of characters. Wildcard patterns also allow you to specify char-
acter ranges. In the next example, the pattern

dir [st]*.txt

will return all of the files that start with either the letters “s” or “t” that have a “.txt”
extension. Finally, you can use the question mark (?) to match any single character.

The wildcard pattern matching operators are listed in table 4.4. This table lists the
operators and includes some simple examples of how each one works.

Table 4.4 PowerShell wildcard pattern matching operators

Operator Description Example Result

-like –clike –ilike Do a wildcard pattern match. “one” –like “o*” $true

-notlike –cnotlin -inotlike Do a wildcard pattern match; true
if the pattern doesn’t match.

“one” –notlike “o*” $false
THE PATTERN MATCHING OPERATORS 107

You can see from the table that there are several variations on the basic -like operator.
These variations include case-sensitive and case-insensitive versions of the operator, as
well as variants that return true if the target doesn’t match the pattern. Table 4.5 sum-
marizes the special characters that can be used in PowerShell wildcard patterns.

While wildcard patterns are very simple, their matching capabilities are limited, so
PowerShell also provides a set of operators that use regular expressions.

4.4.2 Regular expressions

Regular expressions are conceptually (if not syntactically) a superset of wildcard
expressions. By this, we mean that you can express the same patterns in regular
expressions that you could in wildcard expression, but with slightly different syntax.

In fact, in version 1 of PowerShell, wildcard patterns are translated inter-
nally into the corresponding regular expressions under the covers.

With regular expressions, instead of using “*” to match any sequence of characters as
you would in wildcard patterns, you use “.*”. And, instead of using “?” to match any
single character, you use the dot “.” instead.

The name “regular expressions” comes from theoretical computer science,
specifically the branches of automata theory (state machines) and formal lan-
guages. Ken Thompson, one of the creators of the UNIX operating system,
saw an opportunity to apply this theoretical aspect of computer science to
solve a real-world problem—namely finding patterns in text in an editor—
and the rest is history. Most modern languages and environments that work
with text now allow you to use regular expressions. This includes languages
such as Perl, Python, and VBScript, and environments such as EMACS and

Table 4.5 Special characters in PowerShell wildcard patterns

Wildcard Description Example Matches Doesn’t Match

* Matches zero or more characters
anywhere in the string.

a* a
aa
abc
ab

bc
babc

? Matches any single character a?b abc
aXc

a,
ab

[<char>-
<char>]

Matches a sequential range of
characters

a[b-d]c abc
acc
adc

aac
aec
afc
abbc

[<char><ch
ar>…]

Matches any one character from a
set of characters

a[bc]c abc
acc

a
ab
Ac
adc

AUTHOR’S
NOTE

ACADEMIC
ALERT
108 CHAPTER 4 OPERATORS AND EXPRESSIONS

Microsoft Visual Studio. The regular expressions in PowerShell are imple-
mented using the .NET regular expression classes. The pattern language im-
plemented by these classes is very powerful; however, it’s also very large, so
we can’t completely cover it in this book. On the other hand, since Power-
Shell directly uses the .NET regular expression classes, any source of docu-
mentation for .NET regular expressions is also applicable to PowerShell. For
example, the Microsoft Developer Network has extensive (if rather frag-
mented) online documentation on .NET regular expressions.

The operators that work with regular expressions are -match and -replace. These
operators are shown in table 4.6 along with a description and some examples.

Using the $matches variable

The -match operator is similar to the -like operator in that it matches a pattern
and returns a result. However, along with that result, it also sets the $matches vari-
able. This variable contains the portions of the string that are matched by individual
parts of the regular expressions. The only way to clearly explain this is with an exam-
ple. Here we go:

PS (1) > "abc" -match "(a)(b)(c)"
True

In this example, the string on the left side of the -match operator is matched against
the pattern on the right side. In the pattern string, you can see three sets of parenthe-
ses. Figure 4.1 shows this expression in more detail. You can see on the right side of
the match operator that each of the components in parentheses is a “submatch”.
We’ll get to why this is important in the next section.

Table 4.6 PowerShell regular expression matching operators

Operator Description Example Result

-match
-cmatch
-imatch

Do a pattern match using regular expressions. “Hello” –match “[jkl]” $true

-notmatch
-cnotmath
-inotmatch

Do a regex pattern match; return true if the pat-
tern doesn’t match.

“Hello” –notmatch “[jkl]” $false

-replace
-creplace
-ireplace

Do a regular expression substitution on the string
on the right side and return the modified string.

“Hello” –replace “ello”,”i’ “Hi”

Delete the portion of the string matching the reg-
ular expression.

“abcde” –replace “bcd” “ae”
THE PATTERN MATCHING OPERATORS 109

The result of this expression was true, which means that the match succeeded. It also
means that $matched should be set, so let’s look at what it contains:

PS (2) > $matches

Key Value
--- -----
3 c
2 b
1 a
0 abc

$matches contains a hashtable where the keys of the hashtable are indexes that cor-
respond to parts of the pattern that matched. The values are the substrings of the tar-
get string that matched. Note that even though we only specified three subpatterns,
the hashtable contains four elements. This is because there is always a default element
that represents the entire string that matched. Here’s a more complex example that
shows multiple nested matches.

PS (4) > "abcdef" -match "(a)(((b)(c))de)f"
True
PS (5) > $matches

Key Value
--- -----
5 c
4 b
3 bc
2 bcde
1 a
0 abcdef

Now we have the outermost match in index 0, which matches the whole string. Next
we have a top-level match at the beginning of the pattern that matches “a” at index 1.
At index 2, we have the complete string matched by the next top-level part, which is
“bcde”. Index 3 is the first nested match in that top-level match, which is “bc”. This
match also has two nested matches: b at element 4 and c at element 5.

"abc" -match " (a) (b) (c) "

Match operator

String to match
(2) Second
 submatch

(1) First
 submatch

(3) Third
 submatch

(0) Complete
pattern

Figure 4.1

This diagram shows the anatomy

of a regular expression match oper-

ation where the pattern contains

submatches. Each of the bracketed

elements of the pattern corre-

sponds to a submatch pattern.
110 CHAPTER 4 OPERATORS AND EXPRESSIONS

Matching using named captures

Of course, calculating these indexes is fine if the pattern is simple. If it’s complex as in
the previous example, it’s hard to figure out what goes where; and even if you do,
when you look at what you’ve written a month later, you’ll have to figure it out all
over again. The .NET regular expression library provides a way to solve this problem
by using named captures. You specify a named capture by placing the sequence
“?<name>” immediately inside the parentheses that indicate the match group. This
allows you to reference the capture by name instead of by number, making complex
expressions easier to deal with. This looks like:

PS (10) > "abcdef" -match "(?<o1>a)(?<o2>((?<e3>b)(?<e4>c))de)f"
True
PS (11) > $matches

Key Value
--- -----
o1 a
e3 b
e4 c
o2 bcde
1 bc
0 abcdef

Now let’s look at a more realistic example.

Parsing command output using regular expressions

Existing utilities for Windows produce text output, so you have to parse the text to
extract information. (As you may remember, avoiding this kind of parsing was one of
the reasons PowerShell was created. However, we still need to interoperate with the
rest of the world.) For example, the net.exe utility can return some information
about your computer configuration. The second line of this output contains the
name of the computer. Our task is to extract the name and domain for this computer
from that string. One way to do this is to calculate the offsets and then extract sub-
strings from the output. This is tedious and error prone (since the offsets might
change). Here’s how to do it using the $matches variable. First let’s look at the form
of this string.

PS (1) > (net config workstation)[1]
Full Computer name brucepay64.redmond.corp.microsoft.com

It begins with a well-known pattern “Full Computer name”, so we start by matching
against that to make sure there are no errors. Then we see that there is a space before
the name, and the name itself is separated by a period. We’re pretty safe in ignoring
the intervening characters, so here’s the pattern we’ll use:

PS (2) > $p='^Full Computer.* (?<computer>[^.]+)\.(?<domain>[^.]+)'

Figure 4.2 shows this pattern in more detail.
THE PATTERN MATCHING OPERATORS 111

We check the string at the beginning, then allow any sequence of characters that ends
with a space, followed by two fields that are terminated by a dot. Notice that we
don’t say that the fields can contain any character. Instead we say that they can con-
tain anything but a period. This is because regular expressions are greedy—that is,
they match the longest possible pattern, and since the period is any character, the
match will not stop at the period. Now let’s apply this pattern.

PS (3) > (net config workstation)[1] -match $p
True

It matches, so we know that the output string was well formed. Now let’s look at
what we captured from the string.

PS (4) > $matches.computer
brucepay64
PS (5) > $matches.domain
redmond

We see that we’ve extracted the computer name and domain as desired. This
approach is significantly more robust than using exact indexing for the following rea-
sons. First, we checked with a guard string instead of assuming that the string at
index 1 was correct. In fact, we could have written a loop that went through all of the
strings and stopped when the match succeeded. In that case, it wouldn’t matter
which line contained the information; we would find it anyway. We also didn’t care
about where in the line the data actually appeared, only that it followed a basic well-
formed pattern. With a pattern-based approach, output format can vary significantly,
and this pattern would still retrieve the correct data. By using techniques like this,
you can write more change-tolerant scripts than you would otherwise

Whew! So that’s it for the pattern matching operators. In this section, we covered
the two types of pattern matching operators—wildcard patterns and regular expres-
sions. Wildcard patterns are pretty simple, but learning to use regular expressions
effectively requires more work. On the other hand, you’ll find that the power of reg-
ular expressions is more than worth the effort invested to learn them. We’ll come
back to these patterns again in chapter 6 when we discuss the switch statement. For
now, though, let’s come back down to earth and cover the last of the basic operators

^Full Computer.* (?<computer>[^.]+)\.(?<domain>[^.]+)'

^ anchors
string

Sequence
containing

anything but ‘.’

.* matches any
characters matches ‘.’

Figure 4.2

This is an example of a regular

expression pattern that uses the

named submatch capability.

When this expression is used

with the -match operator, in-

stead of using simple numeric

indexes in the $matches vari-

able for the substrings, the

names will be used.
112 CHAPTER 4 OPERATORS AND EXPRESSIONS

in the PowerShell language. These are the logical operators (-and, -or, -not) and
the bitwise equivalents (-band, -bor, -bnot).

4.5 LOGICAL AND BITWISE OPERATORS

Along with the comparison operators, PowerShell also has the logical operators -and,
-or, -xor, and -not for combining simpler comparisons into more complex expres-
sions. The logical operators convert their operands into Boolean values and then per-
form the logical operation. Table 4.7 lists these operators.

The PowerShell logical operators are short-circuit operators—they only do
as much work as they need to. With the -and operator, if the left operand
evaluates to $false then the right operand expression is not executed.
With the -or operator, if the left operand evaluates to $true then the
right operand is not evaluated.

PowerShell also provides equivalent bitwise operators for doing binary operations on
integer values. These operators can be used to test and mask bit fields, as shown in the
examples in table 4.6. In the first version of PowerShell, the bitwise operators are lim-
ited in that they only support [int].

4.6 SUMMARY

This concludes our tour of the basic PowerShell operators. We covered a lot of infor-
mation, much of it in great detail. We covered the basic PowerShell operators and

Table 4.7 Logical and bitwise operators

Operator Description Example Result

-and Do a logical and of the left and right values. 0xff -and $false $false

-or Do a logical or of the left and right values. $false –or 0x55 $true

-xor Do a logical exclusive-or of the left and right values. $false –xor $true
$true –xor $true

$true
$false

-not Do the logical complement of the left and right values. -not $true $false

-band Do a binary and of the bits in the values on the left and
right side.

0xff –band 0x55 85 (0x55)

-bor Do a binary or of the bits in the values on the left and
right side.

0x55 -bor 0xaa 255 (0xff)

-bxor Do a binary exclusive-or of the left and right values. 0x55 -bxor 0xaa
0x55 -bxor 0xa5

255 (0xff)
240
(0xf0)

-bnot Do the bitwise complement of the argument value. -bnot 0xff -256
(0x
ffffff00)

AUTHOR’S
NOTE
SUMMARY 113

expressions with semantics and applications of those operators. The important points
to remember are:

• PowerShell operators are polymorphic with special behaviors defined by Power-
Shell for the basic types: numbers, strings, arrays, and hashtables.

• The behavior of most of the binary operators is determined by the type of the
operand on the left.

• There are two types of pattern matching operations in PowerShell—wildcard
patterns (usually used for matching filenames) and regular expressions.

• Because the comparison and pattern matching operators work on collections, in
many cases you don’t need a looping statement to search through collections.

• Regular expressions are powerful and can be used to do complex text manipula-
tions with very little code. PowerShell uses the .NET regular expression classes
to implement the regular expression operators in the language.

But we’re not done yet! Join us in the next chapter for “Operators: The Sequel” or
“Son of Operators”. In that chapter, we’ll finish off operators and expressions and also
go over how variables are used. Please stay tuned.
114 CHAPTER 4 OPERATORS AND EXPRESSIONS

C H A P T E R 5

Advanced operators
and variables

5.1 Operators for working with types 115
5.2 The unary operators 117
5.3 Grouping, subexpressions, and array

subexpressions 119
5.4 Array operators 123
5.5 Property and method operators 132

5.6 The PowerShell format
operator -f 137

5.7 Redirection and the redirection
operators 138

5.8 Variables 141
5.9 Summary 145
The greatest challenge to any thinker is stating the problem in a way
that will allow a solution.

 —Bertrand Russell

The previous chapter covered the basic operators in PowerShell, and in this chapter
we’re going to continue the discussion of operators by covering the more advanced
ones, which include things that some people don’t think of as operators at all. We’re
also going to cover how to build complex data structures using these operators. The
chapter concludes with a detailed discussion of how variables work in PowerShell,
and how you can use them with operators to accomplish significant tasks.

5.1 OPERATORS FOR WORKING WITH TYPES

The type of an object is fundamental to determining the sorts of operations we can
perform on that object. Up until now, we’ve been allowing the type of the object to
115

implicitly determine the operations that are performed. But sometimes we want to do
this explicitly. So that we may do this, PowerShell provides a set of operators that can
work with types, as listed in table 5.1. These operators let us test whether an object is
of a particular type or enable us to convert an object to a new type. The -is operator
returns true if the object on the left side is of the type specified on the right side. By
“is”, we mean that the left operator is either of the type specified on the right side or
is derived from that type. (See the section “Brushing up on objects” in chapter 1 for
an explanation of derivation.)

The -isnot operator returns true if the left side is not of the type specified on the
right side. The right side of the operator must be represented as a type or a string that
names a type. This means that you can either use a type literal such as [int] or the
literal string “int”. The -as operator will try to convert the left operand into the type
specified by the right operand. Again, either a type literal can be used or you can use
a string naming a type.

The PowerShell -is and -as operators are directly modeled on the corre-
sponding operators in C#. However, PowerShell’s version of -as uses
PowerShell’s more aggressive approach to casting. For example, the C# as
will not cast the string “123” into the number 123, whereas the PowerShell
operator will do so. The PowerShell -as operator will also work on any
type and the C# operator is restricted to reference types.

You may be wondering why we need the -as operator when we can just use a cast.
The reason is that the -as operator allows you to use a runtime expression to specify
the type, whereas the cast is fixed at parse time. Here’s an example showing how you
can use this runtime behavior.

PS (1) > foreach ($t in [float],[int],[string]) {"0123.45" -as $t}
123.45

123
0123.45

In this example, we looped over a list of type literals and converted the string into
each of the types. This isn’t possible when types are used as operators.

Finally, there is one additional difference between a regular cast and using the -as
operator. In a cast, if the conversion doesn’t succeed, an error is generated. With the
-as operator, if the cast fails then the expression returns $null instead of generating
an error.

PS (2) > [int] "abc" -eq $null
Cannot convert "abc" to "System.Int32". Error: "Input string was not
in a correct format."
At line:1 char:6
+ [int] <<<< "abc" -eq $null
PS (3) > ("abc" -as [int]) -eq $null
True
PS (4) >

AUTHOR’S
NOTE
116 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

We see this in the example. Casting “abc” to [int] generated an error, but the -as
operator just returned $null instead. Table 5.1 provides several more examples of
how to use the type operators PowerShell provides.

In practice, most of the time the automatic type conversion mechanism will be all
you need, and explicit casts will take care of the majority of the remaining cases. So
why have these operators? They’re mostly used in scripting. For example, if you want
to have a script that behaves differently based on whether it’s passed a string or a
number, you’ll need to use the -is operator to select which operation to perform.
Obvious examples of this kind of functionality are the binary operators described in
the previous chapter. The addition operator has different behavior depending on the
type of its left argument. To write a script that did the same thing, you’d have to use
-is to select the type of the operation to perform and -as to convert the right oper-
and to the correct type. We’ll look at examples of this in the chapter on scripting.

5.2 THE UNARY OPERATORS

Now let’s take a detailed look at the unary operators. These operators are listed in
table 5.2. We’ve actually seen most of these operators already in previous sections.
The unary + and - operators do what you’d expect for numbers. Applying them to
any other type results in an error. The use of the type casts as unary operators was
discussed at length in chapter 3, so we won’t go into it again. The interesting

Table 5.1 PowerShell operators for working with types

Operator Example Results Description

-is $true –is [bool] $true True if the type of the left side matches the type
of the right side.

$true -is [object] $true This is always true—everything is an object
except $null.

$true -is [ValueType] $true The left side is an instance of a .NET value type.

"hi" -is [ValueType] $false A string is not a value type; it’s a reference type.

"hi" –is [object] $true But a string is still an object.

12 –is [int] $true 12 is an integer.

12 –is "int" $true The right side of the operator can be either a type
literal or a string naming a type.

-isnot $true –isnot [string] $true The object on the left side is not of the same type
as the right side.

$true –isnot [object] $true The null value is the only thing that isn’t an object.

-as "123" -as [int] 123 Takes the left side and converts it to the type
specified on the right side.

123 –as "string" "123" Turns the left side into an instance of the type
named by the string on the right.
THE UNARY OPERATORS 117

operators in this section are the increment and decrement operators. They match the
behavior of the equivalent operators in C with both the prefix and postfix forms of
the operators.

Again, these operators are defined only for variables containing numbers. Apply-
ing them to a variable containing anything other than a number results in an error.
The prefix form of the ++ operator increments the variable by 1 and returns the new
value. The postfix form increments the variable by 1 but returns the original value
stored in the variable. The -- operator does the same thing, except that it subtracts 1
instead of adding it.

The increment and decrement operators were almost not included in PowerShell
because they introduced a problem. In languages such as C and C#, when you use
one of these operators as a statement:

$a++

nothing is displayed. This is because statements in C and C# don’t return values. In
PowerShell, however, all statements return a value. This led to confusion. People
would write scripts like this:

$sum=0
$i=0
while ($i -lt 10) { $sum += $i; $i++ }
$sum

Table 5.2 PowerShell unary operators

Operator Example Results Description

- - (2+2) -4 Negation. Tries to convert its argument to
a number, then negates the result.

+ + “ ” 123 Unary plus. Tries to convert its argument
to a number and returns the result. This is
effectively a cast to a number.

-- --$a ; $a-- Depends on the current
value of the variable.

Pre and post decrement operator. Con-
verts the content of the variable to a num-
ber, then tries to subtract one from it. The
prefix version returns the new value; the
postfix version returns the original value.

++ ++$a; $a++ Depends on the current
value of the variable.

Pre and post increment. Converts the vari-
able to a number, then adds 1 to the
result. The prefix version returns the new
value; the postfix version returns the origi-
nal value.

[<type>] [int] “0x123” 291 Type cast. Converts the argument into an
instance of the type specified by the cast

, , (1+2) 1-element array containing
the value of the expression.

Unary comma operator. Creates a new
one-element array of type [object[]]
and stores the operand in it.
118 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

and be surprised to see the numbers 1 through 10 displayed. This was because $a++
returned a value and PowerShell was displaying the results of every statement. This
was so confusing that we almost removed these operators from the language. Then we
hit on the idea of a voidable statement. Basically, this means that certain types of
expressions, when used as statements, are not displayed. Voidable statements include
assignments and the increment/decrement operators. When they are used in an
expression, they return a value, but when they’re used as a standalone statement, they
return no value. Again, this is one of those details that won’t affect how you use Pow-
erShell other than to make it work as you expect.

Sometimes you want to explicitly discard the output of a statement. In effect,
you want to turn a regular statement into a voidable one. The way to do
this through an explicit cast is to [void] as in [void] (write-object
"discard me"). The statement whose value you want to discard is en-
closed in parentheses and the whole thing is cast to void. We’ll see another
way to accomplish the same effect using the redirection operators later in
this chapter.

One area where voidable statements are particularly interesting is in the use of subex-
pressions for grouping sets of statements. We’ll cover these expressions next.

5.3 GROUPING, SUBEXPRESSIONS,
AND ARRAY SUBEXPRESSIONS

So far we’ve seen a variety of situations where collections of expressions or statements
have been grouped together. We’ve even used these grouping constructs in string
expansions back in chapter 3. Now we’ll look at them in more detail. In fact, there are
three ways of grouping expressions in PowerShell, as shown in table 5.3.

AUTHOR’S
NOTE

Table 5.3 Expression and statement grouping operators

Operator Example Results Description

(…) (2 + 2) * 3
(get-date).dayofweek

12
Returns the current
week day.

Parentheses group expression opera-
tions and may contain either a simple
expression or a simple pipeline.

$(…) $($p = “a*”;
get-process $p)

Returns the process
objects for all proc-
esses starting with the
letter a.

Subexpressions group collections of
statements as opposed to being limited
to a single expression. If the contained
statements return a single value, it will
be retuned as a scalar. If the state-
ments return more than one value, they
will be accumulated in an array.

@(…) @(dir c:\; dir d:\) Returns an array con-
taining the FileInfo
objects in the root of
the C:\ and D:\ drives.

The array subexpression operator
groups collections of statements in the
same manner as the regular subexpres-
sion operator, but with the additional
behavior that the result will always be
returned as an array.
GROUPING, SUBEXPRESSIONS, AND ARRAY SUBEXPRESSIONS 119

The first grouping notation is the simple parenthetical notation. As in most lan-
guages, the conventional use for this notation is to control the order of operations, as
shown by the following example:

PS (1) > 2+3*4
14
PS (2) > (2+3)*4
20

The parentheses in the second expression cause the addition operation to be per-
formed first. In PowerShell, parentheses also have another use. Looking at the syntax
specification for parenthetical expressions illustrates this:

(<pipeline>)

From the syntax, we can see that pipelines are allowed between simple parentheses.
This allows us to use a command or pipeline as a value in an expression. For example,
to obtain a count of the number of files in a directory, we can use the dir command
in parentheses, then use the count property to get the number of objects returned.

PS (1) > (dir).count
46

Using a pipeline in the parentheses lets us get a count of the number of files matching
the wildcard pattern “*.doc”.

PS (2) > (dir | where {$_.name -like '*.doc'}).count
32

People familiar with other languages tend to assume that the expression
(1,2,3,4) is an array literal in PowerShell. In fact, as was discussed at length
in chapter 3, this is not the case. The comma operator, discussed in the next
section, allows you to easily construct arrays in PowerShell, but there are no
array literals as such in the language. All that the parentheses do is control
the order of operations. Otherwise, there is nothing special about them. In
fact, the precedence of the comma operator is such that you typically never
need parentheses for this purpose. More on that later.

Now let’s move on to the next set of grouping constructs—the subexpressions. There
are two forms of the subexpression construct, as shown in the following:

$(<statementList>)
@(<statementList>)

The syntactic difference between a subexpression (either form) and a simple paren-
thetical expression is that you can have any list of statements in a subexpression
instead of being restricted to a single pipeline. This means that you can have any
PowerShell language element in these grouping constructs, including loop state-
ments. It also means that you can have several statements in the group. Let’s look at
an example. Earlier in this chapter, we looked at a short piece of PowerShell code that

AUTHOR’S
NOTE
120 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

calculates the numbers in the Fibonacci sequence below 100. At the time, we didn’t
count the number of elements in that sequence. We can do this easily using the sub-
expression grouping construct.

PS (1) > $($c=$p=1; while ($c -lt 100) {$c; $c,$p=($c+$p),$c}).count
10

By enclosing the statements in $(...), we can retrieve the result of the enclosed
collection of statements as an array.

Many languages have a special notation for generating collections of ob-
jects. For example, Python and functional languages such as Haskell have a
feature called list comprehensions for doing this. PowerShell (and shell lan-
guages in general) don’t need special syntax for this kind of operation. Col-
lections occur naturally as a consequence of the shell pipeline model. If a
set of statements used as a value returns multiple objects, they will automat-
ically be collected into an array.

Another difference between the subexpression construct and simple parentheses is
how voidable expressions are treated. We mentioned this concept earlier with the
increment and decrement operators. A voidable expression is one whose result is dis-
carded when used directly as a statement. Here’s an example that illustrates this. First
we initialize $a to 0 and then use a post-increment expression in parentheses and
assign it to the variable $x.

PS (1) > $a=0
PS (2) > $x=($a++)

And checking the value of $x, we see that it is zero, as expected, and that $a is now 1.

PS (3) > $x
0
PS (4) > $a
1

Now do a second assignment, this time with the expression in $(...).

PS (5) > $x=$($a++)

Checking the value, we see that it’s actually $null.

PS (6) > $x
PS (7) > $x -eq $null
True

This is because the result of the post-increment operation was discarded, so the expres-
sion returned nothing. Now try a more complex statement in the subexpression:

PS (8) > $x=$($a++;$a;$a++;$a)
PS (9) > $x
3
4

AUTHOR’S
NOTE
GROUPING, SUBEXPRESSIONS, AND ARRAY SUBEXPRESSIONS 121

Notice that even though there are four statements in the subexpression, $x only
received two values. Again, the results of the post-increment statements were dis-
carded so they don’t appear in the output.

Now let’s take a look at the difference between the array subexpression @(...)
and the regular subexpression. The difference is that in the case of the array subex-
pression, the result is always returned as an array; this is a fairly small but very useful
difference. In effect, it’s shorthand for:

 [object[]] $(…)

This shorthand exists because in many cases you don’t know if a pipeline operation is
going to return a single element or a collection. Rather than writing complex checks,
you can use this construction and be assured that the result will always be a collec-
tion. If the pipeline returns an array, no new array is created. If, however, the pipeline
returns a scalar value, that value will be wrapped in a single element. (Note that this is
not the same as the comma operator, which always wraps its argument value in a new
one-element array.)

NOTE What the pipeline returns is the single hardest thing to explain in the
PowerShell language. As one of the designers of the language, this more
than anything kept me up at night. The problem is that people get con-
fused; they see that @(12) returns a one-element array containing the
number 12. Because of prior experience with other languages, they expect
that @(@(12)) should therefore produce a nested array, an array of one
element containing an array of one element which is the integer 12. This
is not the case. @(@(12)) returns exactly the same thing as @(12). If
you think of rewriting this expression as [object[]] $([object[]]
$(12)), then it is clear why this is the case—casting an array into an
array of the same type has no effect; it’s already the correct type, so you
just get the original array.

Here’s an example of where this feature is useful. We’ll write a pipeline expression that
sorts some strings, then returns the first element in the sorted collection. We’ll start
by sorting an array of three elements:

PS (1) > $("bbb","aaa","ccc" | sort)[0]
aaa

This returns “aaa” as we expect. Now do it with two elements:

PS (2) > $("bbb","aaa" | sort)[0]
aaa

Still “aaa”, so everything makes sense. Now try it with one element:

PS (3) > $("aaa" | sort)[0]
a

Wait a minute—what happened here? We sorted one element. In a pipeline, you can’t
tell if the commands in the pipeline mean to return a single object (a scalar) or an array
122 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

containing a single object. The default behavior in PowerShell is to assume that if you
return one element, you intended to return a scalar. In this case, the scalar is the string
“aaa” and index 0 of this array is the letter “a”, which is what the example returns. This
is where you use the array subexpression notation. You know what you want the pipe-
line to return, and by using this notation, you can enforce the correct behavior. Here
are the same three examples again, but this time using the array subexpression:

PS (4) > @("bbb","aaa","ccc" | sort)[0]
aaa
PS (5) > @("bbb","aaa" | sort)[0]
aaa
PS (6) > @("aaa" | sort)[0]
aaa
PS (7) >

This time, all three commands return “aaa” as intended. So why have this notation?
Why not just use the casts? Well, here’s what it looks like using the case notation:

PS (7) > ([object[]] ("aaa" | sort))[0]
aaa

Because of the way precedence works, you need an extra set of parentheses to get the
ordering right, which makes the whole expression harder to write. In the end, the
array subexpression notation is easy to use, but it is a bit difficult to learn and under-
stand. As we discussed in chapter 1, on the whole, we’d rather be both—easy to use
and easy to learn—but we’ll take easy to use over easy to learn. You only have to learn
something once, but you have to use it over and over again.

In any case, since we’re discussing arrays, this is a great time to move on to the
other operations PowerShell provides for dealing with arrays.

5.4 ARRAY OPERATORS

Arrays or collections of objects occur naturally in many of the operations that you
undertake. Getting a directory listing in the file system results in a collection of
objects. Getting the set of processes running on a machine or a list of services config-
ured on a server both result in collections of objects. Not surprisingly, PowerShell has
a set of operators and operations for dealing with arrays and collections that are
described in the following sections.

5.4.1 The comma operator “,”

We’ve already seen many examples using the comma operator to build arrays. This
was covered in some detail in chapter 3, but there are a couple of things we still need
to cover. In terms of precedence, the comma operator has the highest precedence of
any operator except for casts and property or array references. This means that when
you’re building up an array with expressions, you need to wrap those expressions in
parentheses. In the next example, we’re trying to build up an array containing the
ARRAY OPERATORS 123

values 1, 2, and 3. We’re using addition to calculate the final value. Because “,” binds
more strongly than plus, we won’t get what we wanted.

PS (1) > 1,2,1+2
1
2
1
2

The result was an array of four elements 1,2,1,2 instead of 1,2,3. This is because
the expression was parsed as (1,2,1)+2, building an array of three elements and
then appending a fourth. You have to use parentheses to get the desired effect:

PS (2) > 1,2,(1+2)
1
2
3

Now you get the result you wanted.

The comma operator has higher precedence than any other operator except
casts and property and array references. This is worth calling out again be-
cause it’s important to keep in mind when writing expressions. If you don’t
remember this, you will produce some strange results.

The next thing to look at is nested arrays. Since a PowerShell array can hold any type
of object, obviously it can also hold another array. We’ve already mentioned that
using the array subexpression operation was not the way to build a nested array. Now
let’s talk about how we actually do it using assignments and the comma operator.
First, you can build nested arrays one piece at a time using assignments. Alternatively,
you can just nest the comma operator within parentheses. Starting with last things
first, here’s how to build up a nested array structure using commas and parentheses.
The result is concise:

PS (1) > $a = (((1,2),(3,4)),((5,6),(7,8)))

LISP users should feel fairly comfortable with this expression if they ignore
the commas. Everybody else is probably shuddering.

And here’s the same construction using intermediate variables and assignments. It’s
rather less concise but perhaps more easily understood.

$t1 = 1,2
$t2 = 3,4
$t3 = 5,6
$t4 = 7,8
$t1_1 = $t1,$t2
$t1_2 = $t3,$t4
$a = $t1_1, $t2_2

In either case, what we’ve done is built up a data structure that looks like the tree
shown in figure 5.1:

AUTHOR’S
NOTE

AUTHOR’S
NOTE
124 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

The data structure in figure 5.1 is an array of two elements that are both arrays of two
elements, which in turn contain arrays of two numbers.

For Perl and PHP users: in those languages, you have to do something spe-
cial to get reference semantics with arrays. In PowerShell, arrays are always
reference types, so there is no special notation needed.

Let’s verify the shape of this data structure. First, use the length property to verify that
$a does hold an array of two elements.

PS (2) > $a.length
2

Next, check the length of the of the array stored in the first element of that array:

PS (3) > $a[0].length
2

It’s also two elements long, as is the array stored in the second element.

PS (4) > $a[1].length
2

Now let’s look two levels down. This is done by indexing the result of an index as shown:

PS (5) > $a[1][0].length
2

Note that $a[0][0] is not the same as $a[0,0], which is either a subset of the ele-
ments in the array called a slice if $a is one-dimensional, or a single index if the array
is two dimensional (see the section on Array slices for more information on slices).
You can compose index operations as deeply as you need to. Here we’re retrieving the
second element of the first element of the second element stored in $a.

PS (6) > $a[1][0][1]

6

To see exactly what’s going on here, take a look at figure 5.2. In this figure, the
heavily dashed lines show the path we followed in this last example that led us to get
to the value 6.

Figure 5.1

A binary tree (arrays of arrays of

arrays)

AUTHOR’S
NOTE
ARRAY OPERATORS 125

These examples show how you can construct arbitrarily complex data structures in
PowerShell. While this is not something you’ll need to use frequently, the capability is
there if you need it. In the section on array slices, we’ll see an example where we use
nested arrays to index multi-dimensional arrays.

5.4.2 The range operator

The next operator to discuss is the range operator “..”. This operator is effectively a
shortcut for generating a sequential array of numbers. For example, the expression:

1..5

is equivalent to

1,2,3,4,5

although it’s somewhat more efficient than using the commas. The syntax for the
range operator is:

<valueExpression> .. <valueExpression>

It has higher precedence than all the binary operators except for the comma operator.
This means that expressions like:

PS (1) > 1..3+4..6
1
2
3
4
5

6

work, but the following gives you a syntax error:

PS (2) > 1+3..4+6
Cannot convert "System.Object[]" to "System.Int32".
At line:1 char:3
+ 1+3 <<<< ..4+6

It’s an error because the expression is being parsed like:

1 + (3..4) + 6

Figure 5.2

Indexing through a binary tree
126 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

This is because the range operator has higher precedence than the addition operator.
In a range operator expression, the left and right operands represent bounds; how-

ever, either the left or the right can be the upper bound. If the left operand is greater
that the right operand, a descending sequence is generated:

PS (3) > 5..1
5
4
3
2
1

The boundaries can also be negative:

PS (4) > -5..-1
-5
-4
-3
-2
-1

Finally, the upper and lower bounds must be integer values with the usual type con-
versions applied so a string that looks like a number will automatically be converted
into a number and a floating point value will automatically be converted to an integer
using the banker’s rounding algorithm described in chapter 4:

PS (5) > "1.1" .. 2.6
1
2
3

The range operator is most commonly used in the foreach loop, described in the
next chapter, and in array slices, which are covered in the next section.

5.4.3 Array indexing

Most people don’t think of indexing into an array as involving operators or that “[]”
is an operator, but in fact, that’s exactly what it is. It has a left operand and a right
operand (the “right” operand is inside the square brackets). The syntax for an array
indexing expression is

<valueExpression> [<valueExpression>]

There are a couple of things to note here. First, this is one of the few areas where you
can’t directly use a pipeline. That’s because square brackets don’t (and can’t) delimit a
pipeline. Square brackets are used in pipeline arguments as wildcard patterns, as
shown in the following command:

dir [abc]*.txt | sort length
ARRAY OPERATORS 127

This pipeline returns all the text files in the current directory that start with a, b, or c,
sorted by length. Now, if the square bracket ended the pipeline, you’d have to type
this instead:

dir "[abc]*.txt" | sort length

So, if you do want to use a pipeline as an index expression, you have to use the subex-
pression notation.

The second thing to note is that spaces are not allowed between the last character
of the expression being indexed and the opening square bracket. This is necessary to
distinguish array expressions on the command line from wildcard patterns. Here’s an
example to illustrate why this is a problem. First assign an array of three elements to $a:

PS (14) > $a=1,2,3

Now write out the entire array along with the string “[0]” (remember, on the com-
mand line, strings don’t need to be quoted).

PS (15) > write-host $a [0]
1 2 3 [0]

Next, let’s just write out the first element of the array:

PS (16) > write-host $a[0]
1

You can see that the only difference between the first and second command lines is
the presence of a space between the array variable and the opening square bracket.
This is why spaces are not permitted in array indexing operations. The square bracket
is used for wildcard expressions, and we don’t want those confused with array index-
ing on the command line.

From the syntax (and from previous examples), you can see that array indexing
works on more than just variables. In fact, it can be applied to any expression that
returns a value. Of course, because the precedence of the square brackets is high, you
usually have to put the expression in parentheses. If you don’t, you’ll get an error, as
in the following example.

PS (1) > 1,2,3[0]
Unable to index into an object of type System.Int32.
At line:1 char:7
+ 1,2,3[0 <<<<]

The error occurred because, due to precedence rules, we were in effect trying to index
into the scalar quantity “3”, which is not indexable. If we put the left value expression
in parentheses, it works as desired.

PS (2) > (1,2,3)[0]
1
PS (3) >
128 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

We retrieved the first element (indexes start at zero) in the array, which is 1. Power-
Shell also supports negative indexes, which index from the end of the array. Let’s try
it out.

PS (3) > (1,2,3)[-1]
3
PS (4) > (1,2,3)[-2]
2

PS (5) > (1,2,3)[-3]
1

Specifying -1 retrieves the last element in the array, -2 retrieves the second-to-last ele-
ment, and so on. In fact, negative indexes are exactly equivalent to taking the length
of the array and subtracting the index from the array:

PS (7) > $a[$a.length - 1]
3
PS (8) > $a[$a.length - 2]
2
PS (9) > $a[$a.length - 3]
1

In the example, $a.Length - 1 retrieves the last element of the array just like -1 did.
In effect, negative indexing is just a shorthand for $array.Length - $index.

Array slices

We’ve seen how to get individual elements out of the array. We can also get sequences
of elements out of arrays as well. This is done by specifying an array of indexes to the
array:

PS (1) > $a = 1,2,3,4,5,6,7
PS (2) > $a[2,3,4,5]
3
4
5
6
PS (3) >

In this example, we used the array 2,3,4,5 to get the corresponding elements out of
the array in $a. This is called slicing an array. Here’s a variation on this example:

PS (3) > $indexes = 2,3,4,5
PS (4) > $a[$indexes]
3
4
5
6

This time we stored the list of indexes in a variable, then used the variable to do the
indexing. The effect was the same. Now let’s process the values that are stored in the
ARRAY OPERATORS 129

$indexes variable. We’ll use the Foreach-Object cmdlet to process each element
of the array and assign the results back to the array.

PS (5) > $indexes = 2,3,4,5 | foreach {$_-1}

We want to adjust for the fact that arrays start at index 0, so we subtract one from
each index element. Now when we do the indexing:

PS (6) > $a[$indexes]
2
3
4
5

we get the elements that correspond to the original index value—2 returns 2, and so
on. But do we need to use the intermediate variable? Let’s try it:

PS (7) > $a[2,3,4,5 | foreach {$_-1}]
Missing ']' after array index expression.
At line:1 char:12
+ $a[2,3,4,5 | <<<< foreach {$_-1}]

So we got a parsing error. This doesn’t mean that we can’t do it. It just means that we
have to wrap the expression in brackets so it will be treated as a single value. We do
this in the following:

PS (8) > $a[(2,3,4,5 | foreach {$_-1})]
2
3
4
5
PS (9) >

This time there was no error and we get the values we expected.

Using the range operator with arrays

There is one other tool in the indexing toolkit, and that is the range operator dis-
cussed in the previous section. This operator is a convenient way to get slices of
arrays. Say we have an array of 10 elements 0 through 9. To get the first four elements
of an array, you can use the range operator as follows:

PS (2) > $a[0..3]
0
1
2
3

By taking advantage of the way negative indexing works, you can get the last four ele-
ments of the array by doing:

PS (3) > $a[-4..-1]
6

130 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

7
8
9

You can even use ranges to reverse an array. To do this, you need to know the length
of the array, which you can get through the length property. The following example
shows this. (We’re casting the result of the expression to string so it will be displayed
on one line.)

PS (6) > [string] $a[($a.length-1) .. 0]
9 8 7 6 5 4 3 2 1 0

This isn’t an efficient way of reversing the array. Using the Reverse static
member on the [array] class is more efficient. See section 5.4.4 for more in-
formation on how to use .NET methods in PowerShell.

In PowerShell, slicing works for retrieving elements of an array, but you can’t use it for
assignments. You get an error if you try. For example, let’s try to replace the slice [2,3,4]
with a single value 12.

PS (1) > $a = 1,2,3,4,5,6,7,8
PS (2) > $a[2,3,4] = 12
Array assignment to [2,3,4] failed because assignment to slices is
not supported.
At line:1 char:4
+ $a[2 <<<< ,3,4] = 12

As you can see, you get an error telling you that assignment to slices is not supported.
Here’s what you have to do get the desired transformation:

PS (3) > $a = $a[0,1] + 12 + $a[5 .. 7]
PS (4) > $a
1

2
12
6
7
8

Basically, you have to take the array slices before and after the desired values and then
concatenate all three pieces together to produce a new array,

Working with multi-dimensional arrays

So far we’ve covered one-dimensional arrays, but .NET allows for arrays to be
n-dimensional. PowerShell supports this by looking at the type of the array and
mapping the set of indexes onto the number of dimensions the array has. If you
specify two indexes and the array is one-dimensional, you’ll get two elements back. If
the array is two dimensional, you’ll get one element back. Let’s try this. First we need
to construct a multi-dimensional array using the New-Object cmdlet.

AUTHOR’S
NOTE
ARRAY OPERATORS 131

PS (1) > $2d = new-object 'object[,]' 2,2

This statement created a 2 by 2 array of objects. Now let’s set the value in the array to
particular values. We do this by indexing into the array.

PS (2) > $2d[0,0] = "a"
PS (3) > $2d[1,0] = 'b'
PS (4) > $2d[0,1] = 'c'
PS (5) > $2d[1,1] = 'd'
PS (6) > $2d[1,1]
d

This appears to imply that slices don’t work in multi-dimensional arrays, but in fact
they do when you use nested arrays of indexes and wrap the expression by using the
comma operator in parentheses.

PS (7) > $2d[(0,0) , (1,0)]
a
b

Here we retrieved the elements of the array at indexes (0,0) and (1,0). And, as in the
case of one-dimensional arrays, we can use variables for indexing:

PS (8) > $one=0,0 ; $two=1,0
PS (9) > $2d [$one, $two]
Unexpected token ' $one, $two ' in expression or statement.
At line:1 char:18
+ $2d [$one, $two] <<<<
PS (10) > $2d[$one, $two]
a
b

And you can even use a variable containing a pair of index arrays.

PS (11) > $pair = $one,$two

PS (12) > $2d[$pair]
a
b

This covers pretty much everything we need to say about arrays. Now let’s move on
to properties and methods.

5.5 PROPERTY AND METHOD OPERATORS

As we’ve seen in many examples so far, the property dereference operator in Power-
Shell is the dot “.”. As was the case with array indexing, this is properly considered an
operator in PowerShell with left and right operand expressions. We’ll get to what that
means in a second.

When we say property here, we’re talking about any kind of data member
on an object, regardless of the underlying Common Language Runtime
representation (or implementation) of the member.

AUTHOR’S
NOTE
132 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

First let’s look back at the basics. Everything in PowerShell is an object (even scripts
and functions as we’ll see later on). As discussed in chapter 1, objects have properties
(data) and methods (code). To get at both, you use the dot “.” operator. To get the
length of a string, you use the length property:

PS (1) > "Hello world!".length
12

In a similar fashion, we can get the length of an array:

PS (3) > (1,2,3,4,5).length
5

As was the case with the left square bracket in array indexing, spaces are not permit-
ted between the left operand and the dot.

PS (4) > (1,2,3,4,5) .count
Unexpected token '.count' in expression or statement.
At line:1 char:18
+ (1,2,3,4,5) .count <<<<

This is necessary to make sure that arguments to cmdlets are not mistaken for prop-
erty reference operations:

PS (5) > write-output (1,2,3,4,5) .count
1
2
3
4
5
.count

5.5.1 The “.” operator

So much for the basics—now let’s get back to this statement about “.” being an oper-
ator. What’s special about that? Well, just as the left operand can be an expression, so
can the right operand. The right operand is evaluated, which results in a value. That
value is then used as the name of the property on the left operand to retrieve. Let’s
look at an example of how this can be used. First we define a variable to hold the
name of a property.

PS (6) > $prop = "length"

Now we can use that variable to retrieve the property:

PS (7) > "Hello world".$prop
11

This mechanism gives you that magic “one more level of indirection” computer sci-
ence people are so very fond of. Let’s expand on this. To get a list of all of the proper-
ties on an object, we can use the Get-Members (or gm) cmdlet. Let’s use this on an
object. We’ll use dir to get a FileInfo object to work with.
PROPERTY AND METHOD OPERATORS 133

PS (1) > @(dir c:\windows*.dll)[0] | gm -type property

 TypeName: System.IO.FileInfo

Name MemberType Definition
---- ---------- ----------
Attributes Property System.IO.FileAttributes Attributes …
CreationTime Property System.DateTime CreationTime {get;s …

CreationTimeUtc Property System.DateTime CreationTimeUtc {ge …
Directory Property System.IO.DirectoryInfo Directory …
DirectoryName Property System.String DirectoryName {get;}
Exists Property System.Boolean Exists {get;}
Extension Property System.String Extension {get;}
FullName Property System.String FullName {get;}
IsReadOnly Property System.Boolean IsReadOnly {get;set;}
LastAccessTime Property System.DateTime LastAccessTime {get;s …
LastAccessTimeUtc Property System.DateTime LastAccessTimeUtc {ge …
LastWriteTime Property System.DateTime LastWriteTime {get;se …
LastWriteTimeUtc Property System.DateTime LastWriteTimeUtc {get …
Length Property System.Int64 Length {get;}
Name Property System.String Name {get;}

This gives us a list of all of the properties. Of course, we only need the name, so we
can use the Name property on these objects.

PS (2) > @(dir c:\windows*.dll)[0] | gm -type property |
>>> foreach {$_.name}
Attributes
CreationTime
CreationTimeUtc
Directory
DirectoryName
Exists
Extension

FullName
IsReadOnly
LastAccessTime
LastAccessTimeUtc
LastWriteTime
LastWriteTimeUtc
Length
Name

Now we’ll use this list of names to get the corresponding values from the original
object. First get the object into a variable:

PS (1) > $obj = @(dir c:\windows*.dll)[0]

And get list of names; for brevity’s sake, we’ll just get the properties that start with “l”.

PS (2) > $names = $obj | gm -type property l* | foreach {$_.name}

Finally use the list of names to print out the value:
134 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

PS (3) > $names | foreach { "$_ = $($obj.$_)" }
LastAccessTime = 3/25/2006 2:18:50 AM
LastAccessTimeUtc = 3/25/2006 10:18:50 AM
LastWriteTime = 8/10/2004 12:00:00 PM
LastWriteTimeUtc = 8/10/2004 7:00:00 PM
Length = 94784
PS (4) >

Next let’s look at using methods. The method call syntax is:

<valueExpression> . <methodName> (<argument> , <argument> , …)

As always, spaces are not allowed before or after the dot or before the opening paren-
thesis for the reasons discussed previously. Here’s a basic example:

PS (1) > "Hello world!".substring(0,5)
Hello

In this example, we used the substring method to extract the first five characters
from the left operand string. As you can see, the syntax for method invocations in
PowerShell matches what you see in pretty much every other language that has meth-
ods. Contrast this with how commands are called. In method calls, arguments in the
argument list are separated by commas and the whole list is enclosed in parentheses.
With commands, the arguments are separated with spaces and the command ends at
the end of line or at a command terminator, such as the semicolon or the pipe symbol.

This is another area where we experimented with alternate syntaxes. One of the
experiments we conducted resulted in a command-like method invocation syntax
that looked something like:

"Hello world!".(substring 0 5)

We chose not to use this syntax for two reasons (which, by the way, means that you’ll
get an error if you try using it). First, it collided with the ability to perform indirect
property name retrievals. The second (and more important) reason was that people
also found it uncomfortably strange. Empirically, a programmer-style syntax for
method invocations and a shell-style syntax for command invocation seems to work
best. Of course, this is also not without some small issues. First, if you want to pass an
expression to a method, you have to wrap that array in parentheses so the array
comma operator is not confused with the argument separator commas. Next, if you
want to use the output of a command as an argument, you have to wrap the com-
mand in parentheses. Here’s an example:

PS (1) > [string]::join('+',(1,2,3))
1+2+3

We’re using the [string]::join method to create a string out of the array 1,2,3 with
a plus sign between each one. Now let’s do the same thing with the output of a com-
mand. Here’s a command that returns the handle count for the rundll processes.
PROPERTY AND METHOD OPERATORS 135

PS (1) > get-process rundll* | foreach{$_.handles}
58
109

Now let’s join that output into a string, again separated with the plus sign (with
spaces on either side this time).

PS (2) > [string]::join(" + ", (get-process rundll* |
>>> foreach{$_.handles}))
58 + 109

5.5.2 Static methods and the “::” operator

Of course, the observant reader will have noticed the use of the :: operator, which
we briefly discussed in chapter 3. To reiterate, this is the static member accessor.
Where the “.” operator retrieved instance members, the double-colon operator
accesses static members on a class, as is the case with the join method. Its left oper-
and is required to be a type—either a type literal or an expression returning a type as
we see here:

PS (1) > $t = [string]
PS (2) > $t::join('+',(1,2,3))
1+2+3
PS (3) >

We chose to use a separate operator for accessing static methods because of the way
static methods are accessed. Here’s the problem. If we had a type MyModule with a
static property called Module, then the expression

[MyModule].Module

is ambiguous. This is because there is also an instance member Module on the Sys-
tem.Type instance representing the type MyModule. Now we can’t tell if the “Mod-
ule” instance member on System.Type or the “Module” static member on
MyModule should be retrieved. By using the double-colon operator, this ambiguity is
removed.

Other languages get around this ambiguity by using the typeof() oper-
ator. Using typeof() in this example, typeof(MyModule).Module
retrieves the instance property on the Type object and MyModule.Mod-
ule retrieves the static property implemented by the MyModule class.

This finishes our discussion of properties and methods. You may have noticed that in
some of the examples so far, we’ve gone to some lengths in taking expressions apart to
present them. Clearly, on occasion you’ll need a better way to present output, and
that’s what the format operator, covered in the next section, is for.

AUTHOR’S
NOTE
136 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

5.6 THE POWERSHELL FORMAT OPERATOR -F

Most of the time, PowerShell’s built-in formatting and output system will take care of
presenting your results, but sometimes you need more explicit control over the for-
matting of your output. You may also want to format text strings in a specific way.
PowerShell allows you to do these things with the format operator. The format oper-
ator -f is a binary operator that takes a format string as its left operand and an array
of values to format as its right operand. Here’s an example:

PS (1) > '{2} {1} {0}' -f 1,2,3
3 2 1

In the format string, the values enclosed in braces correspond to the index of the ele-
ment in the right operand array. The element is converted into a string and then dis-
played. Along with reordering, when the elements are displayed, you can also control
how they are laid out.

For people familiar with the Python language, the PowerShell format op-
erator is modeled on the Python % operator. However, since PowerShell
doesn’t use the % character as part of its formatting directives, it didn’t
make mnemonic sense for the format operator in PowerShell to be %. In-
stead we chose -f.

Here are some more examples:

PS (3) > '|{0,10}| 0x{1:x}|{2,-10}|' -f 10,20,30
| 10| 0x14|30 |

Here, the first format specifier element “,10” tells the system to pad the text out to 10
characters. The next element is printed with the specifier “:x” telling the system to
display the number as a hexadecimal value. The final display specification has a field
width specifier, but this time it’s a negative value, indicating that the field should be
padded to the right instead of to the left.

The -f operator is, in fact, shorthand for calling the .NET Format method on the
System.String class. The previous example can be rewritten as

PS (4) > [string]::Format('|{0,10}| 0x{1:x}|{2,-10}|',10,20,30)
| 10| 0x14|30 |

and you’ll get exactly the same results. The key benefit of the -f operator is that it’s a
lot shorter to type. This is useful when you’re typing on the command line. The
underlying Format() method has a rich set of specifiers. The basic syntax of these
specifiers is

{<index>[,<alignment>][:<formatString>]}

Some examples using format specifiers are shown in table 5.4.

AUTHOR’S
NOTE
THE POWERSHELL FORMAT OPERATOR -F 137

Of course, there are many more things you can do with formatting than we can cover
here. Refer to the Microsoft MSDN documentation for the full details of all of the
various options.

5.7 REDIRECTION AND THE
REDIRECTION OPERATORS

All modern shell languages have input/output redirection operators, and PowerShell
is no different. The redirection operators supported in version 1 of PowerShell are
shown in table 5.5.

Table 5.4 Expression and statement grouping operators

Formant

Specifier
Description Example Output

{0} Display a particular element. “{0} {1}” –f “a”,”b” a b

{0:x} Display a number in Hexadecimal. “0x{0:x}” -f 181342 0x2c45e

{0:X} Display a number in Hexadecimal with
the letters in uppercase.

“0x{0:X}” -f 181342 0x2C45E

{0:dn} Display a decimal number left-justified,
padded with zeros.

“{0:d8}” -f 3 00000003

{0:p} Display a number as a percentage. “{0:p}” -f .123 “{0:p}” -f .123

{0:C} Display a number as currency. “{0:c}” -f 12.34 $12.34

{0,n} Display with field width n, left aligned. “|{0,5}|” –f “hi” | hi|

{0,-n) Display with field width n, right aligned. “|{0,-5}|” –f “hi” |hi |

{0:hh}
{0:mm}

Displays the hours and minutes from a
DateTime value.

“{0:hh}:{0:mm}” –f (get-
date)

01:34

{0:C} Display using the currency symbol for
the current culture.

“|{0,10:C}|” -f 12.4 | $12.40|

Table 5.5 Expression and statement grouping operators

Operator Example Results Description

> dir > out.txt Contents of out.txt
are replaced.

Redirect pipeline output to a file,
overwriting the current contents.

>> dir >> out.txt Contents of out.txt
are appended to.

Redirect pipeline output to a file,
appending to the existing content.

2> dir nosuchfile.txt 2> err.txt Contents of err.txt
are replaced by the
error messages.

Redirect error output to a file,
overwriting the current contents.

2>> dir nosuchfile.txt 2>> err.txt Contents of err.txt
are appended with
the error messages.

Redirect error output to a file,
appending to the current contents.

continued on next page
138 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

The redirection operators allow you to control where output and error objects are
written (including discarding them if that’s what you want to do). In the following
example, we’re saving the output of the Get-Date cmdlet to a file called out.txt.

PS (1) > get-date > out.txt

Now let’s display the contents of this file:

PS (2) > type out.txt

Tuesday, January 31, 2006 9:56:25 PM

You can see that the object has been rendered to text using the same mechanism as
would be used when displaying on the console. Now let’s see what happens when we
redirect the error output from a cmdlet. We’ll let the output be displayed normally.

PS (3) > dir out.txt,nosuchfile 2> err.txt

 Directory: Microsoft.Management.Automation.Core\FileSystem::C:\
 working

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 1/31/2006 9:56 PM 40 out.txt

Obviously no error was displayed on the console. Let’s see what was written to the
error file.

PS (4) > type err.txt
get-childitem : Cannot find path 'C:\working\nosuchfile' because it
 does not exist.
At line:1 char:4
+ dir <<<< out.txt,nosuchfile 2> err.txt

We see the full error message that would have been displayed on the console. Now
let’s try the append operator. We’ll add another line to the output file we created ear-
lier, and display the contents of the file.

2>&1 dir nosuchfile.txt 2>&1 The error message is
written to the output.

The error messages are written
to the output pipe instead of the
error pipe.

< Not implemented in
PowerShell V1.0

This operator is reserved for
input redirection which is not
implemented in version 1.0 of
PowerShell. Using this operator
in an expression will result in a
syntax error.

Table 5.5 Expression and statement grouping operators (continued)

Operator Example Results Description
REDIRECTION AND THE REDIRECTION OPERATORS 139

PS (5) > get-date >> out.txt
PS (6) > type out.txt

Tuesday, January 31, 2006 9:56:25 PM

Tuesday, January 31, 2006 9:57:33 PM

We see that there are now two records containing the current date. You can also
append error records to a file using the 2>> operator.

The next operator to discuss is the stream combiner 2>&1. This operator causes
error objects to be routed into the output stream instead of going to the error stream.
This allows you to capture error records along with your output. For example, if you
want to get all of the output and error records from a script to go to the same file, you
would just do

myScript > output.txt 2>&1

or

myScript 2>&1 > output.txt

The order doesn’t matter. Now all of the error records will appear inline with the out-
put records in the file. This also works with assignment.

$a = myScript 2>&1

This causes all the output and error objects from myScript to be placed in $a. You
could then separate the errors by checking for their type with the -is operator, but it
would be easier to separate them up front. This is another place where you can use
the grouping constructs. The following construction allows you to capture the output
objects in $output and the error objects in $error.

$error = $($output = myScript) 2>&1

You would use this idiom when you wanted to take some additional action on the
error objects. For example, you might be deleting a set of files in a directory. Some of
the deletions might fail. These will be recorded in $error, allowing you to take addi-
tional actions after the deletion operation has completed.

Sometimes you want to discard output or errors. In PowerShell, you do this by
redirecting to $null. For example, if you don’t care about the output from
myScript then you would write:

myScript > $null

and to discard the errors, you would write:

myScript 2> $null

The last thing to mention for I/O redirection is that, under the covers, redirection is
done using the Out-File cmdlet. If fact,

myScript > file.txt
140 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

is just syntactic sugar for

myScript | out-file –path file.txt

In some cases, you’ll want to use Out-File directly because it gives you more control
over the way the output is written. The synopsis for Out-File is

Out-File [-FilePath] <String> [[-Encoding] <String>]
[-Append] [-Force] [-NoClobber] [-Width <Int32>]

[-InputObject <PSObject>]
[-Verbose] [-Debug] [-ErrorAction <ActionPreference>]
[-ErrorVariable <String>] [-OutVariable <String>]
[-OutBuffer <Int32>] [-WhatIf] [-Confirm]]

The interesting parameters are -encoding, which lets you specify the encoding
(such as ASCII, Unicode, UTF8, and so on); -append, which appends to an existing
file instead of overwriting it; -noclobber, which prevents you from overwriting
(clobbering) an existing file; and -width, which tells the cmdlet how wide you want
the output formatted. The full details for this cmdlet are available by running the
command:

get-help out-file

at the PowerShell command line.
Earlier in this section, we talked about assignment as being a kind of output redi-

rection. In fact, this analogy is even more significant than we alluded to there. We’ll
go into details in the next section, when we finally cover variables themselves.

5.8 VARIABLES

In many of the examples we’ve seen so far, we’ve used variables. Now let’s look at the
actual details of PowerShell variables. First off, PowerShell variables aren’t declared;
they’re just created as needed on first assignment. There also isn’t really any such
thing as an uninitialized variable. If you reference a variable that does not exist yet,
the system will return the value $null (although it won’t actually create a variable).

PS (1) > $NoSuchVariable
PS (2) > $NoSuchVariable -eq $null
True

In the example, we looked at a variable that doesn’t exist and see that it returns $null.

$null, like $true and $false, is a special constant variable that is de-
fined by the system. You can’t change the value of these variables.

You can tell whether a variable exists or not by using the Test-Path cmdlet as shown:

PS (3) > test-path variable:NoSuchVariable
False

AUTHOR’S
NOTE
VARIABLES 141

This works because variables are part of the PowerShell unified namespaces. Just as
files and the registry are available through virtual drives, so are PowerShell variables.
You can get a list of all of the variables that currently exist by doing

dir variable:/

So how do we create a variable? First off, there are a number of variables that are
defined by the system: $true, $false, and $null are the ones we’ve seen so far
(we’ll mention the others as we come to them). User variables are created on first
assignment, as we see in the next example.

PS (3) > $var = 1
PS (4) > $var
1
PS (5) > $var = "Hi there"
PS (6) > $var
Hi there
PS (7) > $var = get-date
PS (8) > $var

Sunday, January 29, 2006 7:23:29 PM

In this example, first we assigned a number, then a string, then a DateTime object.
This illustrates that PowerShell variables can hold any type of object. If you do want
to add a type attribute to a variable, you use the cast notation on the left of the vari-
able. Let’s add a type attribute to the variable $val.

PS (1) > [int] $var = 2

Looking at the result, we see the number 2.

PS (2) > $var
2

That’s fine. What happens if we try to assign a string to the variable? Let’s try it.

PS (3) > $var = "0123"
PS (4) > $var
123

First, there was no error. Second, by looking at the output of the variable, you can see
that the string “0123” was converted into the number 123. This is why we say that the
variable has a type attribute. Unlike strongly typed languages where a variable can only
be assigned an object of the correct type, PowerShell will allow you to assign any object
as long as it is convertible to the target type using the rules described in chapter 3. If
the type is not convertible then you’ll get a runtime type conversion error (as opposed
to a “compile-time” error.)

PS (5) > $var = "abc"
Cannot convert "abc" to "System.Int32". Error: "Input string was no
t in a correct format."
At line:1 char:5
+ $var <<<< = "abc"
142 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

In this example, we tried to assign “abc” to a variable with the type attribute [int].
Since “abc” can’t be can’t be converted to a number, you see a type conversion error.

Now what about variable names? What characters are allowed in a variable name?
The answer is: any character you want, with some caveats. There are two notations
for variables. The simple notation starts with a dollar sign followed by a sequence of
characters, which can include letters, numbers, the underscore, and the colon. The
colon has a special meaning that we’ll get to in a minute. The second notation allows
you to use any character in a variable name. It looks like this:

${This is a variable name}

You can use any character you want in the braces. You can even use a close brace if
you escape it, as we see in the next example.

PS (7) > ${this is a variable name with a `} in it}
PS (8) > ${this is a variable name with a `} in it} = 13
PS (9) > ${this is a variable name with a `} in it}
13

Earlier, we said that the colon character was special in a variable name. This is used to
delimit the namespace that the system uses to locate the variable. For example, to
access PowerShell global variables, you use the global namespace:

PS (1) > $global:var = 13
PS (2) > $global:var
13

This example set the variable “var” in the global context to the value 13. You can also
use the namespace notation to access variables at other scopes. This is called a scope
modifier. Scopes will be covered in chapter 6, so we won’t say anything more about
that here.

Along with the scope modifiers, the namespace notation lets you get at any of the
resources surfaced in PowerShell as drives. For example, to get at the environment
variables, you use the env namespace as shown:

PS (1) > $env:SystemRoot
C:\WINDOWS

In this example, we retrieved the contents of the SystemRoot environment variable.
You can use these variables directly in paths. For example:

PS (3) > dir $env:systemroot\explorer.exe

 Directory: Microsoft.Management.Automation.Core\FileSystem::C:\
 WINDOWS

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 8/10/2004 12:00 PM 1032192 explorer.exe

This retrieved the filesystem information for explorer.exe.
VARIABLES 143

For cmd.exe or command.com users, the equivalent syntax would be %sys-
temroot%\explorer.exe. There, the percent signs delimit the variable. In
PowerShell, this is done with braces.

Many of the namespace providers are also available through the variable notation
(but you usually have to wrap the path in braces). Let’s look back at an example we
saw at the beginning of chapter 4:

${c:old.txt} -replace 'is (red|blue)','was $1' > new.txt

The initial construct should now start to make sense. The sequence ${c:old.txt}
is a variable that references the filesystem provider through the C: drive and retrieves
the contexts of the file named “old.txt”. With this simple notation, we read the con-
tents of a file. No open/read/close—we treat the file itself as an atomic value.

Using variable notation to access a file can be startling at first, but it’s a log-
ical consequence of the unified data model in PowerShell. Since things like
variables and functions are available as drives, things such as drives are also
available using the variable notation. In effect, this is an application of the
Model-View Controller (MVC) pattern. Each type of data store (filesystem,
variables, registry, and so forth) is a “model”. The PowerShell provider in-
frastructure acts as the controller and there are (by default) two views: the
“filesystem” navigation view and the variable view. The user is free to
choose and use the view most suitable to the task at hand.

You can also write to a file using the namespace variable notation. Here’s that example
rewritten to use variable assignment instead of a redirection operator (remember, ear-
lier we said that assignment can be considered a form of redirection in PowerShell.)

${c:new.txt} = ${c:old.txt} -replace 'is (red|blue)','was $1'

In fact, you can even do an in-place update of a file by using the same variable on
both sides of the assignment operator. To update the file “old.txt” instead of making
a copy, do

${c:old.txt} = ${c:old.txt} -replace 'is (red|blue)','was $1'

All we did was change the name in the variable reference from “new.txt” to “old.txt”.
This won’t work if you use the redirection operator, because the output file is opened
before the input file is read. This would have the unfortunate effect of truncating the
previous contents of the output file. In the assignment case, the file is read atomically;
that is, all at once, processed, then written atomically. This allows for “in-place” edits
because the file is actually buffered entirely in memory instead of in a temporary file.
To do this with redirection, you’d have to save the output to a temporary file and
then rename the temporary file so it replaces the original. Now let’s leverage this fea-
ture along with multiple assignments to swap two files “f1.txt” and “f2.txt”. Earlier in
this chapter we showed how to swap two variables. We can use the same technique to
swap two files. Here we go:

${c:f1.txt},${c:f2.txt} = ${c:f2.txt},${c:f1.txt}

AUTHOR’S
NOTE

AUTHOR’S
NOTE
144 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

All of these examples using variables to read and write files cause the entire
contents of files to be loaded into memory as a collection of strings. On mod-
ern computers it’s possible to handle moderately large files this way, but do-
ing it with very large files is memory-intensive, inefficient, and might even
fail under some conditions. Keep this in mind when using these techniques.

When the filesystem provider reads the file, it returns the file as an array of strings.

When accessing a file using the variable namespace notation, PowerShell
assumes that it’s working with a text file. Since the notation doesn’t provide
a mechanism for specifying the encoding, you can’t use this technique on
binary files. You’ll have to use the Get-Content and Set-Content
cm dlets instead.

This provides a simple way to get the length of a file:

${c:file.txt}.length

The downside of this simple construct is that it requires reading the entire file into
memory and then counting the result. It works fine for small files (a few megabytes)
but it won’t work on files that are gigabytes in size.

This is all we’re going to cover about variables here. In chapter 7, we’ll return to
variables and talk about how variables are scoped in the PowerShell language.

5.9 SUMMARY

In this chapter, we finished our coverage of PowerShell operators and expressions. We
covered how to build complex data structures in PowerShell and how to use the redi-
rection operators to write output to files. We covered arrays, properties, and methods.
Finally, we covered the basics of PowerShell variable semantics and variable
namespaces. The important points to remember are:

• The type operators allow you to write scripts that have polymorphic behavior.
By using these operators to examine the types of objects, you can decide how to
process those objects.

• The prefix and postfix operators ++ and -- are a convenient way of increment-
ing and decrementing variables.

• The subexpression operator $(...) allows you to use arbitrary PowerShell
script code anywhere that you can use a value expression. The array subexpres-
sion operator @(...) allows you to guarantee that the result of an expression
is always an array.

• PowerShell arrays support both jagged arrays—that is, arrays that contain or ref-
erence other arrays and multi-dimensional arrays. Array slicing is also supported.

• Use the comma operator to build arrays and complex nested data structures.

AUTHOR’S
NOTE

AUTHOR’S
NOTE
SUMMARY 145

• Use the dot operator “.” for accessing instance members and the double-colon
“::” for accessing static members.

• The PowerShell redirection operators allow you to control where the output
and error objects are written. They also allow you to easily discard these objects
if so desired.

• The format operator -f can be used to do complex formatting tasks when the
default formatting doesn’t produce the desired results.

• PowerShell variable namespaces let you access a variety of Windows “data
stores”, including environment variables and the filesystem, not just PowerShell
variables.
146 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

C H A P T E R 6

Flow control in scripts

6.1 Using the if/elseif/else

statement 148
6.2 The while loop 151
6.3 The do/while loop 152
6.4 The for loop 153
6.5 The foreach loop 155

6.6 Labels, break, and continue 159
6.7 The PowerShell switch

statement 161
6.8 Flow control using cmdlets 169
6.9 The value of statements 175
6.10 Summary 176
I may not have gone where I intended to go, but I think I have ended
up where I needed to be.

 —Douglas Adams, The Long Dark Teatime of the Soul

Previous chapters showed you how to solve remarkably complex problems in Power-
Shell using only commands and operators. You can select, sort, edit, and present all
manner of data by composing these elements into pipelines and expressions. In fact,
commands and operators were the only elements available in the earliest prototypes
of PowerShell. Sooner or later, however, if you want to write significant programs or
scripts, you need to add some sort of custom looping or branch logic to your solu-
tion. This is what we’re going to cover in this chapter: PowerShell’s take on the tradi-
tional programming constructs that all languages possess.

PowerShell has the usual flow control statements for branching and loops;
however, there are some behavioral differences that even experienced shell users
should be aware of. The most obvious difference is that PowerShell typically allows the
use of pipelines in places where other programming languages only allow simple
147

expressions. An interesting implication of this pipeline usage is that the PowerShell
switch statement is both a looping construct and a conditional statement, as you’ll
see in this chapter.

This is also the first time we’ve really dealt with keywords in PowerShell. Keywords
are part of the core PowerShell language. This means that, unlike cmdlets, keywords
cannot be redefined or aliased. Keywords are also case insensitive so you can write
foreach, ForEach, or FOREACH and they will all be accepted by the interpreter. (By
convention, however, keywords in PowerShell scripts are usually written in lowercase.)

With these basics out of the way, let’s look at the PowerShell flow control state-
ments themselves.

6.1 USING THE IF/ELSEIF/ELSE STATEMENT

The first statement we’ll look at is the if statement. This is the basic conditional
statement found in all languages. Figure 6.1 shows the structure of this statement.

The statement shown in figure 6.1 is somewhat hard to read, so here’s an example
to clarify how the if statement works

if ($x –gt 100)
{
 "It's greater than one hundred"
} elseif ($x –gt 50)
{
 "It's greater than 50"
} else
{
 "It's not very big."
}

if (<pipeline>) {<statementList>} elseif (<pipeline>) {<statementList>} else {<statementList>}

if Keyword

 Executed when the
if condition is true

Pipeline to test
enclosed in
parentheses

else Keyword
 Executed when the

elseif condition is
trueBraces are mandatory

around each statement list.

elseif Keyword

elseif Pipeline to test
Executed when none of the

preceding conditions are true

Figure 6.1 PowerShell’s version of the if Statement, which is the basic conditional state-

ment found in all software languages.
148 CHAPTER 6 FLOW CONTROL IN SCRIPTS

In this example, if the variable $x holds a value greater than 100, the string “It’s
greater than one hundred” will be emitted. If $x is greater than 50 but less than 100,
it will emit “It’s greater than 50”; otherwise you’ll get “It’s not very big”. Of course,
you can have zero or more elseif clauses to test different things.

As you might have noticed, the PowerShell if statement is modeled on the if
statement found in C-derived languages such as C#, but there are a couple of excep-
tions. First, elseif is a single keyword with no spaces allowed between the words.
Next, the braces are mandatory around the statement lists, even if you only have a
single statement in the list (or no statements for that matter, in which case you would
have to type “{}”). If you try to write something like

if ($x –gt 100) "It's greater than one hundred"

you’ll get a syntax error:

PS (1) > if ($x -gt 100) "It's greater than one hundred"
Missing statement block after if (condition).
At line:1 char:17
+ if ($x -gt 100) " <<<< It's greater than one hundred"
PS (2) >

The PowerShell grammar technically could support the construction
shown in the preceding code segment. In fact, I did enable this construct at
one point, but when we tried it out, the result was a lot of errors. The prob-
lem is that a newline or a semicolon is required to terminate a command.
This leads to the situation where you write something like:

if ($x –gt 3) write x is $x while ($x--) $x

and discover that, because you’ve missed the semicolon before the while
statement, it writes out the while statement instead of executing it. In the
end, the cost of typing a couple of additional characters was more than offset
by a decreased error rate. For this reason, we made the braces mandatory.

In general, the syntax of the if statement (and all of the PowerShell flow control
statements) is freeform with respect to white space. In other words, you can lay out
your code pretty much any way you want. You can write an if statement that looks
like this:

if($true){"true"}else{"false"}

with no white space whatsoever. Alternatively, you could also write it like this:

if
(
$true
)
{
"true"
}

AUTHOR’S
NOTE
USING THE IF/ELSEIF/ELSE STATEMENT 149

else
{
"false"
}

where each token is on a separate line.
There is, however, one constraint on how you can format an if statement. When

PowerShell is being used interactively, the else or elseif keywords have to be on
the same line as the previous closing brace; otherwise the interpreter will consider the
statement complete and execute it immediately.

It’s important to note that the PowerShell if statement allows a pipeline in the
condition clause, not just a simple expression. This means that it’s possible to do the
following:

if (dir telly*.txt | select-string penguin)
{
 "There's a penguin on the telly."
}

In this example, the pipeline in the condition part of the if statement will scan all of
the text files whose names start with “telly” to see whether they contain the word
“penguin”. If at least one of the files contains this word, the statement block will be
executed, printing out:

 There's a penguin on the telly.

Here’s another example:

if ((dir *.txt | select-string spam).Length –eq 3)
{
 "Spam! Spam! Spam!"
}

In this case, we search all the text files in the current directory looking for the word
“spam”. If exactly three files contain this word then we print out

 Spam! Spam! Spam!

Yes, these are, in fact, Monty Python references. Think of it as a respectful
tip of the hat to the Python language community. If you’re familiar with
Python or Perl, you’ll occasionally recognize cultural references from those
languages in PowerShell examples here and elsewhere. Many of the Power-
Shell development team members had their first scripting experiences with
those languages.

Because you can use pipelines and subexpressions in the conditional part of an if
statement, you can write quite complex conditional expressions in PowerShell. With
subexpressions, you can even use an if statement inside the condition part of
another if statement. Here’s what this looks like:

AUTHOR’S
NOTE
150 CHAPTER 6 FLOW CONTROL IN SCRIPTS

PS (2) > $x = 10
PS (3) > if ($(if ($x -lt 5) { $false } else { $x }) –gt
>>> 20) { $false } else {$true}
True
PS (4) > $x = 25
PS (5) > if ($(if ($x -lt 5) { $false } else { $x }) –gt
>>> 20) { $false } else {$true}
False

PS (6) > $x = 4
PS (7) > if ($(if ($x -lt 5) { $false } else { $x }) –gt
>>> 20) { $false } else {$true}
True
PS (8) >

If looking at this makes your head hurt, welcome to the club—it made mine hurt to
write it. Let’s dissect this statement and see what it’s doing. Let’s take the inner if
statement first.

if ($x -lt 5) { $false } else { $x }

You can see that this statement is straightforward. If $x is less than the number 5, it
returns false; otherwise it returns the value of $x. Based on this, let’s split this into
two separate statements.

$temp = $(if ($x -lt 5) { $false } else { $x })
if ($temp –gt 20) { $false } else {$true}

Now what the outer if statement is doing is also pretty obvious: if the results of the
first (formally inner) statement is greater than 20, return $false; otherwise return
$true.

6.2 THE WHILE LOOP

In this section, we’ll cover the basic iteration or looping statements in PowerShell.
The while statement (also known as a while loop) is the basic PowerShell language
construct for creating a loop. It executes the commands in the statement list as long as
a conditional test evaluates to true. Figure 6.2 shows the while statement syntax:

When you execute a while statement, PowerShell evaluates the <pipeline> section
of the statement before entering the <statementList> section. The output from the
pipeline is then converted to either true or false, following the rules for the Boolean
interpretation of values described in chapter 3. As long as this result converts to true,
PowerShell reruns the <statementList> section, executing each statement in the list.

For example, the following while statement displays the numbers 1 through 3.

$val = 0
while($val -ne 3)
{
 $val++
 write-host "The number is $val"
}

THE WHILE LOOP 151

In this example, the condition ($val is not equal to 3) is true while $val is 0, 1,
and 2. Each time through the loop, $val is incremented by one using the ++ unary
increment operator ($val++). The last time through the loop, $val is 3. When
$val equals 3, the condition statement evaluates to false and the loop exits.

To more conveniently enter this command at the PowerShell command-prompt,
you can simply enter it all on one line as shown:

$val=0; while ($val -ne 3){$val++; write-host "The number is $val"}

Notice that the semicolon separates the first command that adds one to $val from
the second command, which writes the value of $val to the console.

You can accomplish all of the basic iterative patterns just using the while loop,
but PowerShell provides several other looping statements for common cases. Let’s
look at those now.

6.3 THE DO/WHILE LOOP

The other while loop variant in PowerShell is the do-while loop. This is a bottom-
tested variant of the while loop. In other words, it always executes the statement list
at once before checking the condition. The syntax of the do-while loop is shown in
figure 6.3.

The do-while loop is effectively equivalent to:

 <statementList>
 while (<pipeLine>)
 {
 <statementList>
 }

while (<pipeline>) { <statementList> }

while Keyword

Pipeline to test enclosed
in parentheses

 Executed while the pipeline to
test evaluates to true

Braces mark beginning and end of
the statement block

Figure 6.2 The PowerShell while loop statement syntax
152 CHAPTER 6 FLOW CONTROL IN SCRIPTS

where the two statement lists are identical. Having covered the two types of while
loop, we’ll look at the for and foreach loops next.

6.4 THE FOR LOOP

The for loop is the basic counting loop in PowerShell. It’s typically used to step
though a collection of objects. It’s not used as often in PowerShell as in other lan-
guages because there are frequently better ways of processing a collection, as we’ll see
with the foreach statement in the next section. However, the for loop is useful
when you need to know explicitly which element in the collection you’re working
with. Figure 6.4 shows the for loop syntax.:

Notice that the three pipelines in the parentheses are just general pipelines. Con-
ventionally, the initialization pipeline initializes the loop counter variable; the test

do { <statementList> } while (<pipeline>)

do Keyword

Pipeline to test enclosed
in parentheses

 Executed while the pipeline to
test evaluates to true

Braces mark beginning and end of
the statement block

while Keyword

Figure 6.3 The PowerShell do-while loop statement syntax

for (<pipeline> ; <pipeline> ; <pipeline>) { <statementList> }

for Keyword

Initialization pipeline

 Executed while the pipeline to
test evaluates to true

Braces mark beginning and end of
the statement block

Pipeline to test

Increment pipeline

Figure 6.4 The PowerShell for loop statement syntax
THE FOR LOOP 153

pipeline tests this variable against some condition; and the increment pipeline incre-
ments the loop counter. The canonical example is:

PS (1) > for ($i=0; $i -lt 5; $i++) { $i }
0
1
2
3
4
PS (2) >

However, since these are arbitrary pipelines, they can do anything. (Note: if these
pipelines produce output, it is simply discarded by the interpreter.) Here’s an exam-
ple where the condition test is used to generate a side-effect that is then used in the
statement list body:

PS (2) > for ($i=0; $($y = $i*2; $i -lt 5); $i++) { $y }
0
2
4
6
8
PS (3) >

In this example, the pipeline to be tested is actually a subexpression that first sets $y
to be twice the current value of $i, and then compares $i to 5. In the loop body, we
use the value in $y to emit the current loop counter times 2. A more practical exam-
ple would be initializing two values in the initialization pipeline:

PS (3) > for ($($result=@(); $i=0); $i -lt 5; $i++) {$result += $i }
PS (4) > "$result"
0 1 2 3 4

Here we use a subexpression in the initialization pipeline to set $result to the
empty array and the counter variable $i to 0. Then the loop counts up to 5, adding
each value to the result array.

NOTE It’s a little funny to talk about the initialization and increment pipelines.
One usually thinks of pipelines as producing some output. In the for
statement, the output from these pipelines is discarded and the side-effects
of their execution are the interesting part.

Now let’s look at one last example of the for loop. Here we’ll use it to sum up the num-
ber of handles used by the “svchost” processes. First we’ll get a list of these processes:

PS (1) > $svchosts = get-process svchost

We’ll loop through this list and add the handle count for the process to $total:

PS (2) > for ($($total=0;$i=0); $i -lt $svchosts.count; $i++)
>> {$total+=$svchosts[$i].handles}
>>
154 CHAPTER 6 FLOW CONTROL IN SCRIPTS

and finally print out the total:

PS (3) > $total
3457

So using the for loop is straightforward, but it’s kind of annoying to have to man-
age the loop counter. Wouldn’t it be nice if we could just let the loop counter count
take care of itself? That is exactly what the foreach loop does for you, and we’ll dis-
cuss it next.

6.5 THE FOREACH LOOP

Collections are important in any shell environment. In fact, the whole point of using
a scripting language for automation is that you can operate on collections. As we’ve
seen in chapters 3 and 4, PowerShell provides many ways of operating on collections.
Perhaps the most straightforward of these mechanisms is the foreach loop.

Astute readers will remember that there is also an alias “foreach” for the
Foreach-Object cmdlet that we’ve discussed a number of times earlier
on. To clarify, when the word “foreach” is used at the beginning of a state-
ment, it is recognized as the foreach keyword. When it appears in the
middle of a pipeline, it’s treated as the name of a cmdlet.

This statement is syntactically identical to the C# foreach loop with the exception
that you don’t have to declare the type of the loop variable (in fact you can’t actually
do this). Figure 6.5 shows you the syntax for the foreach statement.

Here’s an example. This example loops over all of the text files in the current
directory, calculating the total size of all of the files.

$l = 0; foreach ($f in dir *.txt) { $l += $f.length }

First we set the variable that will hold the total length to zero. Then in the foreach
loop, we use the dir command to get a list of the text files in the current directory
(that is, files with the .txt extension). The foreach statement assigns elements from

AUTHOR’S
NOTE

foreach (<variable> in <pipeline>) { <statementList> }

foreach Keyword

Loop variable

Executed once for each element
produced by the pipeline.

Braces mark beginning and end of
the statement block.

in keyword

Pipeline to loop over

Figure 6.5 The PowerShell foreach loop statement syntax
THE FOREACH LOOP 155

this list one at a time to the loop variable $f and then executes the statement list with
this variable set. At the end of the statement, $f will retain the last value that was
assigned to it, which is the last value in the list. Compare this example to the for
loop example at the end of the previous section. Because we don’t have to manually
deal with the loop counter and explicit indexing, this example is significantly simpler.

In C#, the foreach loop variable is local to the body of the loop and is
undefined outside of the loop. This is not the case in PowerShell. In Power-
Shell, the loop variable is simply another variable in the current scope. After
the loop has finished executing, the variable is still visible and accessible
outside of the loop and will be set to the last element in the list.

Now let’s use a variation of a previous example. Here we want to find out the number
of text files in the current directory and the total length of those files. First we’ll ini-
tialize two variables: $c to hold the count of the files, and $l to hold the total length.

PS (1) > $c=0
PS (2) > $l=0

Next we run the foreach statement.

PS (3) > foreach ($f in dir *.txt) {$c += 1; $l += $f.length }

Finally we display the results accumulated in the variables.

PS (4) > $c
5
PS (5) > $l
105
PS (6) >

Let’s look at the actual foreach statement in detail now. The <pipeline> part in this
example is

dir *.txt

This produces a collection of FileInformation objects representing the files in the
current directory. The foreach statement loops over this collection, binding each
object to the variable $f and then executing the loop body.

It is important to note that this statement doesn’t stream the results of the pipe-
line. The pipeline is run to completion and only then does the loop body begin exe-
cuting. Let’s take a second to contrast this behavior with the way the aforementioned
Foreach-Object cmdlet works. Using the Foreach-Object cmdlet, this state-
ment would look like:

dir *.txt | foreach-object { $c += 1; $l += $_.length }

In the case of the Foreach-Object, the statement body is executed as soon as each
object is produced. In the foreach statement, all the objects are collected before the
loop body begins to execute. This has two implications.

AUTHOR’S
NOTE
156 CHAPTER 6 FLOW CONTROL IN SCRIPTS

First, because in the foreach statement case all the objects are gathered at once,
you need to have enough memory to hold all these objects. In the Foreach-Object
case, only one object is read at a time so less storage is required. From this, you would
think that Foreach-Object should always be preferred. In the bulk-read case, how-
ever, there are some optimizations that the foreach statement does that allow it to
perform significantly faster than the Foreach-Object cmdlet. The result is a classic
speed versus space tradeoff. In practice, though, you rarely need to consider these
issues, so use whichever seems most appropriate to the solution at hand.

The Foreach-Object cmdlet is covered later on in this chapter. For
Ruby language fans, Foreach-Object is effectively equivalent to the
.map() operator.

The second difference is that in the Foreach-Object case, the execution of the
pipeline element generating the object is interleaved with the execution of the
Foreach-Object cmdlet. In other words, the command generates one object at a
time and then passes it to foreach for processing before generating the next ele-
ment. This means that the statement list can affect how subsequent pipeline input
objects are generated.

Unlike traditional shells where each command is run in a separate process
and can therefore actually run at the same time, in PowerShell they’re al-
ternating—the command on the left side runs and produces an object, and
then the command on the right side runs.

Executing the foreach statement also defines a special variable for the duration of
the loop. This is the $foreach variable and it’s bound to the loop enumerator. (The
foreach statement keeps track of where it is in the collection through the loop enu-
merator.) By manipulating the loop enumerator, you can skip forward in the loop.
Here’s an example:

PS (1) > foreach ($i in 1..10)
>> { [void] $foreach.MoveNext(); $i + $foreach.current }
>>
3
7
11
15
19
PS (2) >

In this example, the foreach loop iterates over the collection of numbers from 1
to 10. In the body of the loop, the enumerator is used to advance the loop to the next
element. It does this by calling the $foreach.MoveNext() method and then
retrieving the next value using $foreach.current. This lets you sum up each pair
of numbers—(1,2), (3,4) and so on as the loop iterates.

AUTHOR’S
NOTE

AUTHOR’S
NOTE
THE FOREACH LOOP 157

The foreach statement can be used to iterate over anything PowerShell
considers enumerable. This typically includes anything that implements
the .NET IEnumerable interface; however, we adapt that slightly. In par-
ticular, there are some classes that implement IEnumerable that Power-
Shell does not consider enumerable. This includes strings and dictionaries
or hashtables. Because PowerShell unravels collections freely, we don’t
want a string to suddenly be turned into a stream of characters or a hash-
table to be shredded into a sequence of key/value pairs. Hashtables in par-
ticular are commonly used as lightweight (that is. typeless) objects in the
PowerShell environment, so we need to preserve their scalar nature.

The value stored in $foreach is an instance of an object that implements [Sys-
tem.Collection.IEnumerator]. Here’s a quick example that shows you how to
look at the members that are available on this object:

PS (1) > [System.Collections.IEnumerator].Getmembers()|foreach{"$_"}
Boolean MoveNext()
System.Object get_Current()
Void Reset()
System.Object Current
PS (2) >

In the output of this statement, you can see the Current and MoveNext() mem-
bers we’ve used. There is also a Reset() member that will reset the enumerator back
to the start of the collection.

One final thing you need to know about the foreach statement is how it treats
scalar objects. Because of the way pipelines work, you don’t know ahead of time if the
pipeline will return a collection or a single scalar object. In particular, if the pipeline
returns a single object, you can’t tell if it is returning a scalar or a collection consisting
of one object. You can use the @(...) construction described in the advanced
operators chapter to force an array interpretation, but this ambiguity is common
enough that the foreach statement takes care of this by itself. A scalar object in the
foreach statement is automatically treated as a one-element collection:

PS (2) > foreach ($i in "hi") {$i }
hi

In this example, the value to iterate over is the scalar string “hi”. The loop executes
exactly once, printing hi. Now here’s the example that really surprises people. What
happens if the value to iterate over is $null? Let’s find out:

PS (3) > foreach ($i in $null) { "executing" }
Executing

So the loop executes. This illustrates that we treat $null as a scalar value. Compare
this with the empty array:

PS (4) > foreach ($i in @()) { "executing" }
PS (5) >

AUTHOR’S
NOTE
158 CHAPTER 6 FLOW CONTROL IN SCRIPTS

This time it didn’t execute. The empty array is unambiguously a collection with no
members, which is quite different from a collection having one member whose value
is $null. At this point, you’re thinking “do I really need to know this?” Probably not.
This is not a situation you’re likely to encounter. (I think the only person who’s ever
actually noticed this is our attentive and extremely patient lead language tester Marcel.)
Still, it always helps to have a complete understanding of the way systems operate.

On that note, let’s move on to a slightly different topic and talk about break,
continue, and using labeled loops to exit out of nested loop statements.

6.6 LABELS, BREAK, AND CONTINUE

In this section, we discuss how to do nonstructured exits from the various looping
statements using the break and continue statements as well as labeled loops.

In the dawn of computer languages, there was only one flow control statement:
goto. While this was simple, it also resulted in programs that were hard to under-
stand and maintain. Then along came structured programming. Structured program-
ming introduced the idea of loops with single entry and exit points. This made
programs much easier to understand and therefore maintain. Constructs such as
while loops and if/then/else statements made it simpler to write programs that are
easy to follow.

For the academically inclined reader, Wikipedia.org has a nice discussion
on the topic of structured programming.

So structured programming is great; that is, until you have to exit from a set of deeply
nested while loops. That’s when pure structured programming leads to pathologi-
cally convoluted logic because you have to litter your program with Boolean variables
and conditionals to achieve the flow of control you need. This is when being a little
“impure” and allowing the use of unstructured flow control elements (including the
infamous goto statement) is useful. Now, PowerShell doesn’t actually have a goto
statement. Instead, it has break and continue statements and labeled loops.

Let’s look at some simple examples. Here’s a while loop that stops counting at 5.

PS (1) > $i=0; while ($true) { if ($i++ -ge 5) { break } $i }
1
2
3
4
5
PS (2) >

Notice in this example that the while loop condition is simply $true. Obviously,
this loop would run forever were it not for the break statement. As soon as $i hits 5,
the break statement is executed and the loop terminates. Now let’s look at the con-
tinue statement. In this example, we have a foreach loop that loops over the num-
bers from 1 to 10.

AUTHOR’S
NOTE
LABELS, BREAK, AND CONTINUE 159

PS (1) > foreach ($i in 1..10)
>> {
>> if ($i % 2)
>> {
>> continue
>> }
>> $i
>> }

>>
2
4
6
8
10
PS (2) >

If the number is not evenly divisible by two then the continue statement is exe-
cuted. Where the break statement immediately terminates the loop, the continue
statement causes the flow of execution to jump back to the beginning of the loop and
move on to the next iteration. The end result is that only even numbers are emitted.
The continue statement skips the line that would have printed the odd numbers.

So the basic break and continue statements can handle flow control in a single
loop. But what about nested loops, which was the real problem we wanted to address?
This is where labels come in. Before the initial keyword on any of PowerShell’s loop
statements, you can add a label naming that statement. Then you can use the break
and continue keywords to jump to that statement. Here’s a simple example:

:outer while (1)
{
 while(1)
 {
 break outer;
 }
}

In this example, without the break statement, the loop would repeat forever.
Instead, the break will take you out of both the inner and outer loops.

In PowerShell, the break and continue statements have one rather
strange but useful characteristic. They will continue to search up the calling
stack until a matching label is found. This search will even cross script and
function call boundaries. This means that a break inside a function inside
a script can transfer control to an enclosing loop in the calling script. This
allows for wide-ranging transfer of control. This will make more sense
when we get to the chapter on scripts and functions.

One last thing to know about the break and continue statements—the name of the
loop to jump to is actually an expression, not a constant value. You could, for example,

AUTHOR’S
NOTE
160 CHAPTER 6 FLOW CONTROL IN SCRIPTS

use a variable to name the target of the statement. Let’s try this out. First we set up a
variable to hold the target name:

PS (1) > $target = "foo"

Now we’ll use it in a loop. In this loop, if the least significant bit in the value stored in
$i is 1 (yet another way to test for odd numbers), we skip to the next iteration of the
loop named by $target as we see in the following:

PS (2) > :foo foreach ($i in 1..10) {
>> if ($i -band 1) { continue $target } $i
>> }
>>
2
4
6
8
10
PS (3) >

At this point, we’ve covered all of the basic PowerShell flow control statements, as well
as using labels and break/continue to do non-local flow control transfers. Now let’s
move on to the switch statement, which, as you will see, is extremely useful.

6.7 THE POWERSHELL SWITCH STATEMENT

The switch statement is the most powerful statement in the PowerShell language.
This statement combines pattern matching, branching, and iteration all into a single
control structure. The switch statement in PowerShell is similar to the switch
statement in many other languages—it’s a way of selecting an action based on a par-
ticular value. But the PowerShell switch statement has a number of additional capa-
bilities. It can be used as a looping construct where it processes a collection of objects
instead of a just a single object. It supports the advanced pattern matching features
that we’ve seen with the -match and -like operators. (How the pattern is matched
depends on the flags specified to the switch statement.) Finally, it can be used to
efficiently process an entire file in a single statement.

6.7.1 Basic use of the PowerShell switch statement

Before exploring the basic functions of the switch statement, you need to under-
stand its syntax. Figure 6.6 illustrates this basic syntax.

This is a pretty complex construct, so let’s start by looking at the simplest form of
the statement. Here’s the basic example:

PS (1) > switch (1) { 1 { "One" } 2 { "two" } }
One

The value to switch on is in the parentheses after the switch keyword. In this exam-
ple, it’s the number 1. That value is matched against the pattern in each clause and all
THE POWERSHELL SWITCH STATEMENT 161

matching actions are taken. In this example, the switch value matches “1” so that
clause emits the string “one”. Of course, if we change the value to switch to 2, we get:

PS (2) > switch (2) { 1 { "One" } 2 { "two" } }
two

Now try a somewhat different example. In this case, we have two clauses that match
the switch value:

PS (4) > switch (2) { 1 { "One" } 2 { "two" } 2 {"another 2"} }
two
another 2

You can see that both of these actions are executed. As we stated earlier, the switch
statement executes all clauses that match the switch value. If you want to stop at the
first match, then you use the break statement:

PS (5) > switch (2) {1 {"One"} 2 {"two"; break} 2 {"another 2"}}
two

This causes the matching process to stop after the first matching statement was exe-
cuted. But what happens if no statements match? Well, the statement quietly returns
nothing:

PS (6) > switch (3) { 1 { "One" } 2 { "two"; break } 2 {"another 2"} }
PS (7) >

To specify a default action, you can use the default clause:

PS (7) > switch (3) { 1 { "One" } 2 { "two" } default {"default"} }
default

switch -options (<pipeline>)
{

<pattern> { <statementList> }
<pattern> { <statementList> }
default { <statementList> }

}

switch Keyword

Switch options control how
matching is done. These are:
-regex -wildcard -match -case.

default Keyword

The pipeline produces
values to switch on.
Alternatively, you can
specify the sequence

-file <expr>
Instead of

(<pipeline>).

Pattern/action clauses. All
matching clauses are executed.

The default clause is executed only
if there are no other matches.

Figure 6.6 The PowerShell switch statement syntax
162 CHAPTER 6 FLOW CONTROL IN SCRIPTS

PS (8) > switch (2) { 1 { "One" } 2 { "two" } default {"default"} }
Two

In this example, when the switch value is 3, no clause matches and the default clause
is run. However, when there is a match, the default is not run, as it’s not really consid-
ered a match. This covers the basic mode of operation. Now let’s move on to more
advanced features.

6.7.2 Using wildcard patterns with the switch statement

By default, the matching clauses make a direct comparison against the object in the
clause. If the matching object is a string, then the check is done in a case-insensitive
way, as we see in the next example.

PS (1) > switch ('abc') {'abc' {"one"} 'ABC' {"two"}}
one
two

The switch value “abc” in this example was matched by both “abc” and “ABC”. You
can change this behavior by specifying the -casesensitive option:

PS (2) > switch -case ('abc') {'abc' {"one"} 'ABC' {"two"}}
one

Now the match occurs only when the case of the elements match.

In this example, we only used the prefix “-case” instead of the full option
string. In PowerShell version 1, only the first letter of the option is actually
checked. In later versions, prefixes will still be supported, but the entire
string will be validated instead of just the first character.

Now let’s discuss the next switch option, the -wildcard option. When this flag is
specified, the switch value is converted into a string and the tests are conducted using
the wildcard pattern. (Wildcard patterns were discussed in chapter 4 with the -like
operator.) This is shown in the next example:

PS (4) > switch -wildcard ('abc') {a* {"astar"} *c {"starc"}}
astar
starc

In this example, the pattern a* matches anything that begins with the letter “a” and
the pattern *c matches anything that ends with the letter “c”. Again, all matching
clauses are executed.

There is one more element to mention at this point. When a clause is matched,
the element that matched is assigned to the variable $_ before running the clause.
This is always done, even in the simple examples we discussed earlier, but there it
wasn’t interesting because we were doing exact comparisons so we already knew what
matched. Once you introduce patterns, it’s much more useful to be able to get at the
object that matched. For example, if you’re matching against filename extensions,
you’d want to be able to get at the full filename to do any processing on that file.

AUTHOR’S
NOTE
THE POWERSHELL SWITCH STATEMENT 163

We’ll look at some more practical uses for this feature in later sections. For now,
here’s a basic example that shows how this match works:

PS (5) > switch -wildcard ('abc') {a* {"a*: $_"} *c {"*c: $_"}}
a*: abc
*c: abc

In the result strings, you can see that $_ was replaced by the full string of the actual
switch value.

6.7.3 Using regular expressions with the switch statement

As we discussed in chapter 4, the wildcard patterns, while useful, have limited func-
tions. For more sophisticated pattern matching, we used regular expressions. Regular
expressions are available in the switch statement through the -regex flag. Let’s
rewrite the previous example using regular expressions instead of wildcards. It looks
like this:

PS (6) > switch -regex ('abc') {^a {"a*: $_"} 'c$' {"*c: $_"}}
a*: abc
*c: abc

As we see, $_ is still bound to the entire matching key. But one of the most powerful
features of regular expressions is submatches. A submatch is a portion of the regular
expression that is enclosed in parentheses, as discussed in chapter 4 with the -match
operator. With the -match operator, the submatches are made available through the
$matches variable. This same variable is also used in the switch statement. The
next example shows how this works.

PS (8) > switch -regex ('abc') {'(^a)(.*$)' {$matches}}

Key Value

--- -----
2 bc
1 a
0 abc

In the result shown here, $matches[0] is the overall key, $matches[1] is the first
submatch, in this case the leading “a”, and $matches[2] is the remainder of the string.
As always, matching is case-insensitive by default, but you can specify the -case
option to make it case-sensitive. This is demonstrated in the next example.

PS (9) > switch -regex ('abc') {'(^A)(.*$)' {$matches}}

Key Value
--- -----
2 bc
1 a
0 abc

PS (10) > switch -regex -case ('abc') {'(^A)(.*$)' {$matches}}
164 CHAPTER 6 FLOW CONTROL IN SCRIPTS

In the first command, we changed the match pattern from a to A and the match still
succeeded—case was ignored. In the second command, we added the -case flag and
this time the match did not succeed.

So far we’ve discussed three ways to control how matching against the switch
value works; in other words, three matching modes. (Actually six, since the -case
flag can be used with any of the previous three.) But what if you need something a bit
more sophisticated than a simple pattern match? The switch statement lets you
handle this by specifying an expression in braces instead of a pattern. In the next
example, we specify two expressions that check against the switch value. Again the
switch value is made available through the variable $_.

PS (11) > switch (5) {
>> {$_ -gt 3} {"greater than three"}
>> {$_ -gt 7} {"greater than 7"}}
>>
greater than three
PS (12) > switch (8) {
>> {$_ -gt 3} {"greater than three"}
>> {$_ -gt 7} {"greater than 7"}}
>>
greater than three
greater than 7
PS (13) >

In the first statement, only the first clause was triggered because 5 is greater than 3
but less than 7. In the second statement, both clauses fired.

You can use these matching clauses with any of the other three matching modes,
as we see in the following:

PS (13) > switch (8) {
>> {$_ -gt 3} {"greater than three"}

>> 8 {"Was $_"}}
>>
greater than three
Was 8

The first expression {$_ -gt 3} evaluated to true so “greater than three” was printed,
and the switch value matched 8 so “Was 8” also printed (where $_ was replaced by
the matching value).

Now we have exact matches, pattern matches, conditional matches, and the
default clause. But what about the switch value itself? So far, all of the examples have
been simple scalar values. What happens if you specify a collection of values? This is
where the switch statement acts like a form of loop.

switch works like the other looping statement in that the expression in
the parentheses is fully evaluated before it starts iterating over the individ-
ual values.

AUTHOR’S
NOTE
THE POWERSHELL SWITCH STATEMENT 165

Let’s look at another example where we specify an array of values.

PS (2) > switch(1,2,3,4,5,6) {
>> {$_ % 2} {"Odd $_"; continue}
>> 4 {"FOUR"}
>> default {"Even $_"}
>> }
>>
Odd 1
Even 2
Odd 3
FOUR
Odd 5
Even 6

In this example, the switch value was 1,2,3,4,5,6. The switch statement iterates
over the collection, testing each element against all of the clauses. The first clause
returns “Odd $_” if the current switch element is not evenly divisible by two. The
next clause prints out “FOUR” if the value is 4. The default clause prints out “Even
$_” if the number is even. Note the use of continue in the first clause. This tells the
switch statement to stop matching any further clauses and move on to the next ele-
ment in the collection. In this instance, the switch statement is working in the same
way that the continue statement works in the other loops. It skips the remainder of
the body of the loop and continues on with the next loop iteration. What happens if
we’d used break instead of continue? Let’s try it:

PS (3) > switch(1,2,3,4,5,6) {
>> {$_ % 2} {"Odd $_"; break}
>> 4 {"FOUR"}
>> default {"Even $_"}
>> }
>>

Odd 1

As with the other loops, break doesn’t just skip the remainder of the current itera-
tion; it terminates the overall loop processing. (If you want to continue iterating, use
continue instead. More on that later.)

Of course, iterating over a fixed collection is not very interesting. In fact, you can
use a pipeline in the switch value, as the next example shows. In this example, we
want to count the number of DLLs, text files, and log files in the directory c:\win-
dows. First we initialize the counter variables:

PS (1) > $dll=$txt=$log=0

Now we run the actual switch statement. This switch statement uses wildcard pat-
terns to match the extensions on the filenames. The associated actions increment a
variable for each extension type:

PS (2) > switch -wildcard (dir c:\windows)
>> {*.dll {$dll++} *.txt {$txt++} *.log {$log++}}
166 CHAPTER 6 FLOW CONTROL IN SCRIPTS

Once we have the totals, let’s display them:

PS (3) > "dlls: $dll text files: $txt log files: $log"
dlls: 6 text files: 9 log files: 120

Note that in this example the pipeline element is being matched against every clause.
Since a file can’t have more than one extension, this doesn’t affect the output, but it
does affect performance somewhat. It’s faster to include a continue statement after
each clause so the matching process stops as soon as the first match succeeds.

Here’s something else we glossed over earlier in our discussion of $_—it always
contains the object that was matched against. This is important to understand when
you’re using the pattern matching modes of the switch statement. The pattern
matches create a string representation of the object to match against, but $_ is still
bound to the original object. Here’s an example that illustrates this point. This is
basically the same as the last example, but this time, instead of counting the number
of files, we want to calculate the total size of all of the files having a particular exten-
sion. Here are the revised commands:

PS (1) > $dll=$txt=$log=0
PS (2) > switch -wildcard (dir) {
>> *.dll {$dll+= $_.length; continue}
>> *.txt {$txt+=$_.length; continue}
>> *.log {$log+=$_.length; continue}
>> }
>>
PS (3) > "dlls: $dll text files: $txt log files: $log"
dlls: 166913 text files: 1866711 log files: 6669437
PS (4) >

Notice how we’re using $_.length to get the length of the matching file object. If
$_ were bound to the matching string, we would be counting the length of the file
names instead of the lengths of the actual files.

6.7.4 Processing files with the switch statement

There is one last mode of operation for the switch statement to discuss: the -file
option. Instead of specifying an expression to iterate over as the switch value, the -file
option allows you to name a file to process. Here’s an example where we’re processing
the Windows update log file. Again we start by initializing the counter variables:

PS (1) > $au=$du=$su=0

Next we use the -regex and -file options to access and scan the file WindowsUp-
date.log, looking update requests from automatic updater, Windows Defender, and
SMS triggered updates.

PS (2) > switch -regex -file c:\windows\windowsupdate.log {
>> 'START.*Finding updates.*AutomaticUpdates' {$au++}
>> 'START.*Finding updates.*Defender' {$du++}
THE POWERSHELL SWITCH STATEMENT 167

>> 'START.*Finding updates.*SMS' {$su++}
>> }
>>

Finally we print out the results.

PS (3) > "Automatic:$au Defender:$du SMS:$su"
Automatic:195 Defender:10 SMS:34

Now it’s possible to do basically the same thing by using Get-Content or even the
filesystem name trick we looked at in chapter 4:

PS (4) > $au=$du=$su=0
PS (5) > switch -regex (${c:windowsupdate.log}) {
>> 'START.*Finding updates.*AutomaticUpdates' {$au++}
>> 'START.*Finding updates.*Defender' {$du++}
>> 'START.*Finding updates.*SMS' {$su++}
>> }
>>
PS (6) > "Automatic:$au Defender:$du SMS:$su"
Automatic:195 Defender:10 SMS:34

Here we used ${c:windowsupdate.log} to access the file content instead of -
file. So why have the -file option? There are two reasons.

The -file operation reads one line at a time, so it uses less memory than Get-
Content, which has to read the entire file into memory before processing. Also,
because -file is part of the PowerShell language, the interpreter can do some opti-
mizations, which gives -file some performance advantages.

So overall, the -file option can potentially give you both speed and space
advantages in some cases (the space advantage typically being the more significant,
and therefore more important of the two).

6.7.5 Using the $switch loop enumerator

in the switch statement

One more point: just as the foreach loop used $foreach to hold the loop enumer-
ator, the switch statement uses $switch to hold the switch loop enumerator. This
is useful in a common pattern—processing a list of options. Say we have a list of
options where the option -b takes an argument and -a, -c, and -d don’t. Let’s write
a switch statement to process a list of these arguments. First let’s set up a list of test
options. For convenience, we’ll start with a string and then use the string split()
method to break it into an array of elements:

PS (1) > $options="-a -b Hello -c".split()

Next let’s initialize the set of variables that will correspond to the flags:

PS (2) > $a=$c=$d=$false
PS (3) > $b=$null

Now we can write our switch statement. The interesting clause is the one that han-
dles -b. This clause uses the enumerator stored in $switch to advance the item
168 CHAPTER 6 FLOW CONTROL IN SCRIPTS

being processed to the next element in the list. We use a cast to [void] to discard
the return value from the call to $switch.movenext() (more on that later). Then
we use $switch.current to retrieve the next value and store it in $b. Then the
loop continues processing the remaining arguments in the list.

PS (4) > switch ($options)
>> {
>> '-a' { $a=$true }
>> '-b' { [void] $switch.movenext(); $b= $switch.current }
>> '-c' { $c=$true }
>> '-d' { $d=$true }
>> }
>>

The last step in this example is to print out the arguments in the list to make sure
they were all set properly.

PS (5) > "a=$a b=$b c=$c d=$d"
a=True b=Hello c=True d=False
PS (6) >

We see that $a and $c are true, $b contains the argument “Hello”, and $d is still false
since it wasn’t in our list of test options. The option list has been processed correctly.

This isn’t a robust example because it’s missing all error handing. In a
complete example, you would have a default clause that generated errors
for unexpected options. Also, in the clause that processes the argument
for -b , rather than discarding the result of MoveNext() it should check
the result and generate an error if it returns false. This would indicate that
there are no more elements in the collection, so -b would be missing its
mandatory argument.

This finishes the last of the flow-control statements in the PowerShell language, but
there is another way to do selection and iteration in PowerShell—by using cmdlets.
In the next section, we’ll go over a couple of the cmdlets that are a standard part of
the PowerShell distribution. These cmdlets let you control the flow of your script in a
manner similar to the flow control statements. (In later sections, we’ll describe how
you can add your own specialized flow control elements to PowerShell.)

For a more pragmatic example of using the switch statement, take a look at
listing 10.5 in chapter 10. This is a function that illustrates the use of nest-
ed switch statements in processing XML documents using the .NET Xml-
Reader class.

6.8 FLOW CONTROL USING CMDLETS

While PowerShell’s control statements are part of the language proper, there are also
some cmdlets that can be used to accomplish the same kinds of things. These cmdlets
use blocks of PowerShell script enclosed in braces to provide the “body” of the control

AUTHOR’S
NOTE

AUTHOR’S
NOTE
FLOW CONTROL USING CMDLETS 169

statement. These pieces of script are called ScriptBlocks and are described in detail in
chapter 7 as part of the discussion on functions and scripts. The two most frequent flow-
control cmdlets that you’ll encounter are Foreach-Object and Where-Object.

6.8.1 The Foreach-Object cmdlet

The Foreach-Object cmdlet operates on each object in a pipeline in much the
same way that the foreach statement operates on the set of values that are provided
to it. For example, here’s a foreach statement that prints out the size of each text file
in the current directory:

PS (1) > foreach ($f in dir *.txt) { $f.length }
48
889
23723
328
279164

Using the Foreach-Object cmdlet, the same task can be accomplished this way:

PS (2) > dir *.txt | foreach-object {$_.length}
48
889
23723
328
279164

The results are the same, so what’s the difference? One obvious difference is that you
didn’t have to create a new variable name to hold the loop value. The automatic vari-
able $_ is used as the loop variable.

Automatic variables are common in scripting languages. These variables
aren’t directly assigned to in scripts. Instead, they are set as the side-effect
of an operation. One of the earlier examples of this is in AWK. When a line
is read in AWK, the text of the line is automatically assigned to $0. The line
is also split into fields. The first field is placed in $1, the second is in $2,
and so on. The Perl language is probably the most significant user of auto-
matic variables. In fact, as mentioned previously, Perl inspired the use of
$_ in PowerShell. Things are, however, not all skittles and beer. Automatic
variables can help reduce the size of a script, but they can also make a script
hard to read and difficult to reuse because your use of automatics may col-
lide with mine. From a design perspective, our approach with automatic
variables follows the salt curve. A little salt makes everything taste better.
Too much salt makes food inedible. We’ve tried to keep the use of auto-
matics in PowerShell at the “just right” level. Of course, this is always a sub-
jective judgment. Some people really like salt.

A more subtle difference, as discussed previously, is that the loop is processed one
object at a time. In a normal foreach loop, the entire list of values is generated

AUTHOR’S
NOTE
170 CHAPTER 6 FLOW CONTROL IN SCRIPTS

before a single value is processed. In the Foreach-Object pipeline, each object is
generated and then passed to the cmdlet for processing.

The Foreach-Object cmdlet has an advantage over the foreach loop in the
amount of space being used at a particular time. For example, if you are processing a
large file, the foreach loop would have to load the entire file into memory before
processing. When using the Foreach-Object cmdlet, the file will be processed one
line at a time. This significantly reduces the amount of memory needed to accom-
plish a task.

You’ll end up using the Foreach-Object cmdlet a lot in command lines to per-
form simple transformations on objects (we’ve already used it in many examples so
far). Given the frequency of use, there are two standard aliases for this cmdlet. The
first one is (obviously) foreach. But wait a second—didn’t we say earlier in this
chapter that foreach is a keyword, and keywords can’t be aliased? This is true, but
keywords are only special when they are the first unquoted word in a statement. If they
appear anywhere else (for example as an argument or in the middle of a pipeline),
they’re just another token with no special meaning. Here’s another way to think
about this: the first word in a statement is the key that the PowerShell interpreter uses
to decide what kind of statement it is processing, hence the term “keyword”.

This positional constraint is how the interpreter can distinguish between the key-
word “foreach”:

foreach ($i in 1..10) { $i }

and the aliased cmdlet “foreach”:

1..10 | foreach ($_}

When foreach is the first word in a statement, it’s a keyword; otherwise it’s the
name of a command.

Now let’s look at the second alias. Even though foreach is significantly shorter
than Foreach-Object, there have still been times when users wanted it to be even
shorter.

Actually users wanted to get rid of this notation entirely and have “foreach”
be implied by an open brace following the pipe symbol. This would have
made about half of our users very happy. Unfortunately, the other half were
adamant that the implied operation be Where-Object instead of
Foreach-Object.

Where extreme brevity is required, there is a second alias that is simply the percent
sign (%). Oh ho—now people are really upset! You told us the percent sign is an
operator! Well that’s true but only when it’s used as a binary operator. If it appears as
the first symbol in a statement, it has no special meaning, so we can use it as an alias
for Foreach-Object. This lets you write concise (but somewhat hard to read) state-
ments such as the following, which prints out the numbers from 1 to 5, times two:

AUTHOR’S
NOTE
FLOW CONTROL USING CMDLETS 171

PS (1) > 1..5|%{$_*2}
2
4
6
8
10
PS (2) >

Clearly this construction is great for interactive use where brevity is very important,
but it probably shouldn’t be used when writing scripts. The issue is that Foreach-
Object is so useful that a single-character symbol for it, one that is easy to distin-
guish, is invaluable for experienced PowerShell users. However, unlike the word
“foreach”, “%” is not immediately meaningful to new users. So this notation is great
for “conversational” PowerShell, but generally terrible for broad formal use.

The last thing to know about the Foreach-Object cmdlet is that it can take
multiple scriptblocks. If three scriptblocks are specified, the first one is run before any
objects are processed, the second is run once for each object, and the last is run after
all objects have been processed. This is good for conducting accumulation-type oper-
ations. Here’s another variation, where we sum up the number of handles used by the
service host “svchost” processes:

PS (3) > gps svchost |%{$t=0}{$t+=$_.handles}{$t}
3238

The standard alias for Get-Process is gps. This is used to get a list of processes
where the process name matches “svchost”. These process objects are then piped into
Foreach-Object, where the handle counts are summed up in $t and then emitted
in the last scriptblock. We used the % alias here to show how concise these expressions
can be. In an interactive environment, brevity is important.

And now here’s something to keep in mind when using Foreach-Object. The
Foreach-Object cmdlet works like all cmdlets: if the output object is a collection,
it gets unraveled. One way to suppress this behavior is to use the unary comma oper-
ator. For example, in the following, we assign $a an array of two elements, the second
of which is a nested array.

PS (1) > $a = 1,(2,3)

Now when we check the length, we see that it is two as expected:

PS (2) > $a.length
2

and the second element is still an array.

PS (3) > $a[1]
2
3

However, if we simply run it through Foreach-Object, we’ll find that the length of
the result is now three, and the second element in the result is simply the number “2”.
172 CHAPTER 6 FLOW CONTROL IN SCRIPTS

PS (4) > $b = $a | foreach { $_ }
PS (5) > $b.length
3
PS (6) > $b[2]
2

In effect, the result has been “flattened”. However, if we use the unary comma opera-
tor before the $_ variable, the result has the same structure as the original array.

PS (7) > $b = $a | foreach { , $_ }
PS (8) > $b.length
2
PS (9) > $b[1]
2
3

When chaining foreach cmdlets, we need to repeat the pattern at each stage:

PS (7) > $b = $a | foreach { , $_ } | foreach { , $_ }
PS (8) > $b.length
2
PS (9) > $b[1]
2
3

Why did we do this? Why didn’t we just preserve the structure as we pass the ele-
ments through instead of unraveling by default? Well, both behaviors are, in fact, use-
ful. Consider the follow example, which returns a list of loaded module names:

 get-process | %{$_.modules} | sort -u modulename

Here the unraveling is exactly what we want. When we were designing PowerShell,
we considered both cases; and in applications, on average, unraveling by default was
usually what we needed. Unfortunately, it does present something of a cognitive
bump that surprises users learning to use PowerShell.

6.8.2 The Where-Object cmdlet

The other flow control cmdlet that is used a lot is Where-Object. This cmdlet is
used to select objects from a list, kind of a simple switch cmdlet. It takes each ele-
ment it receives as input, executes its scriptblock argument, passing in the current
pipeline element as $_ and then, if the scriptblock evaluates to true, the element is
written to the pipeline. We’ll show this with an example that selects the even numbers
from a sequence of integers:

PS (4) > 1..10 | where {! ($_ -band 1)}
2
4
6
8
10
FLOW CONTROL USING CMDLETS 173

The scriptblock enclosed in the braces receives each pipeline element, one after
another. If the least significant bit in the element is 1 then the scriptblock returns the
logical complement of that value ($false) and that element is discarded. If the least
significant bit is zero then the logical complement of that is $true and the element is
written to the output pipeline. Notice that the common alias for Where-Object is
simply where. And, as with Foreach-Object, because this construction is so com-
monly used interactively, there is an additional alias, which is simply the question
mark (?). This allows the previous example to be written as:

PS (5) > 1..10|?{!($_-band 1)}
2
4
6
8
10

Again—this is brief, but it looks like the cat walked across the keyboard (trust me on
this one). So while this is fine for interactive use, it is not recommended in scripts
because it’s hard to understand and maintain. As another, more compelling example
of “Software by Cats”, here’s a pathological example that combines elements from the
last few chapters—type casts, operators, and the flow control cmdlets to generate a
list of strings of even-numbered letters in the alphabet, where the length of the string
matches the ordinal number in the alphabet (“A” is 1, “B” is 2, and so on).

PS (1) > 1..26|?{!($_-band 1)}|%{[string][char](
>> [int][char]'A'+$_-1)*$_}

>>

BB
DDDD
FFFFFF
HHHHHHHH
JJJJJJJJJJ
LLLLLLLLLLLL
NNNNNNNNNNNNNN
PPPPPPPPPPPPPPPP
RRRRRRRRRRRRRRRRRR
TTTTTTTTTTTTTTTTTTTT
VVVVVVVVVVVVVVVVVVVVVV
XXXXXXXXXXXXXXXXXXXXXXXX
ZZZZZZZZZZZZZZZZZZZZZZZZZZ
PS (2) >

The output is fairly self-explanatory, but the code is not. Figuring out how this works
is left as an exercise to the reader and as a cautionary tale not to foist this sort of rub-
bish on unsuspecting coworkers.
174 CHAPTER 6 FLOW CONTROL IN SCRIPTS

6.9 THE VALUE OF STATEMENTS

For the final topic in this chapter, let’s return to something we discussed a bit previ-
ously in the advanced operators chapter—namely the difference between statements
and expressions. In general, statements don’t return values, but if they’re used as part
of a subexpression (or a function or script as we’ll see later on), they do return a result.
This is best illustrated with an example. Assume that we didn’t have the range opera-
tor and wanted to generate an array of numbers from 1 to 10. Here’s the traditional
approach we might use in a language such as C#.

PS (1) > $result = new-object System.Collections.ArrayList
PS (2) > for ($i=1; $i -le 10; $i++) { $result.Append($i) }
PS (3) > "$($result.ToArray())"
1 2 3 4 5 6 7 8 9 10

First we create an ArrayList to hold the result. Then we use a for loop to step
through the numbers, adding each number to the result ArrayList. Finally we con-
vert the ArrayList to an array and display the result. This is a straightforward
approach to creating the array, but requires several steps. Using loops in subexpres-
sions, we can simplify it quite a bit. Here’s the rewritten example:

PS (4) > $result = $(for ($i=1; $i -le 10; $i++) {$i})
PS (5) > "$result"
1 2 3 4 5 6 7 8 9 10

Here we don’t have to initialize the result or do explicit adds to the result collection.
The output of the loop is captured and automatically saved as a collection by the
interpreter. In fact, this is more efficient than the previous example, because the
interpreter can optimize the management of the collection internally. This approach
applies to any kind of statement. Let’s look at an example where we want to condi-
tionally assign a value to a variable if it doesn’t currently have a value. First verify that
the variable has no value:

PS (1) > $var

Now do the conditional assignment. This uses an if statement in a subexpression:

PS (2) > $var = $(if (! $var) { 12 } else {$var})
PS (3) > $var
12

From the output, we can see that the variable has been set. Now change the variable
and rerun the conditional assignment:

PS (4) > $var="Hello there"
PS (5) > $var = $(if (! $var) { 12 } else {$var})
PS (6) > $var
Hello there

This time the variable is not changed.
THE VALUE OF STATEMENTS 175

Used judiciously, the fact that statements can be used as value expressions can be
used to simplify your code in many circumstances. By eliminating temporary vari-
ables and extra initializations, creating collections is greatly simplified, as we saw with
the for loop. On the other hand, it’s entirely possible to use this statement-as-
expression capability to produce scripts that are hard to read. (Remember the nested
if statement example we looked at earlier in this chapter?) You should always keep
that in mind when using these features in scripts.

6.10 SUMMARY

In chapter 6, we formally covered the branching and looping statements in the Power-
Shell language as summarized in the following list.

• PowerShell allows you to use pipelines where other languages only allow expres-
sions. This means that, while the PowerShell flow control statements appear to
be similar to the corresponding statements in other languages, there are enough
differences to make it useful for you to spend time experimenting with them.

• There are two ways of handling flow control in PowerShell. The first way is to
use the language flow control statements such as while and foreach. How-
ever, when performing pipelined operations, the alternative mechanism—the
flow control cmdlets Foreach-Object and Where-Object—can be more
natural and efficient.

• When iterating over collections, you should keep in mind the tradeoffs between
the foreach statement and the Foreach-Object cmdlet.

• Any statement can be used as a value expression when nested in a subexpression.
For example, you could use a while loop in a subexpression to generate a col-
lection of values. This can be a concise way of generating a collection, but keep
in mind the potential complexity that this kind of nested statement can introduce.

• The PowerShell switch statement is a powerful tool. On the surface it looks
like the switch statement in C# or the select statement in VB, but with
powerful pattern matching capabilities, it goes well beyond what the statements
in the other languages can do. And, along with the pattern matching, it can also
be used as a looping construct for selecting and processing objects from a collec-
tion or lines read from a file.
176 CHAPTER 6 FLOW CONTROL IN SCRIPTS

C H A P T E R 7

Functions and scripts

7.1 Function basics 178
7.2 Formal parameters and the param

statement 181
7.3 Returning values from

functions 193

7.4 Using functions in a pipeline 199
7.5 Managing functions 204
7.6 Scripts at long last 205
7.7 Summary 212
And now for something completely different…

 —Monty Python

Porcupine quills. We’ve always done it with porcupine quills

 —Dilbert

Seven chapters in and no scripts? Okay—fine—here you go:

"Hello, world"

As you will have astutely observed from the title, in this chapter we finally get into
writing PowerShell scripts in all their myriad forms. As mentioned in chapter 2, func-
tions and scripts are two of the four types of PowerShell commands (the others are
cmdlets and external commands). Prior programming experience is both a blessing
and a curse when using functions and scripts. Most of the time, what you already
know makes it easier to program in PowerShell. The syntax and most of the concepts
will be familiar. Unfortunately, similar is not identical, and this is where prior experi-
ence can trip you up. You’ll expect PowerShell to work like your favorite language,
177

and it won’t work quite the same way. In particular, you need to be aware of a num-
ber of issues concerning the way that PowerShell scripts and functions return values.
For example, in the preceding example script, the string “Hello, world” did not have
a print statement. The string was simply returned from the script. This is true of all
expressions in a script: if the value isn’t consumed (for example, by assigning it to a
variable) then it will be returned. If you have multiple statements in your script, then
your script will return multiple values. Considerations like this will be called out as
we discuss the scripting features in PowerShell. So, put away your porcupine quills
and let’s move on to something not quite so completely different.

7.1 FUNCTION BASICS

The beginning is always the best place to start. In this section we’ll cover the most
basic features of PowerShell functions and supply you with a number of examples
that show you how to use these features.

The following example is obviously a function. And, equally obvious, this func-
tion prints out the string hello world as shown:

PS (1) > function hello { "Hello world" }
PS (2) > hello; hello; hello
Hello world
Hello world
Hello world

But a function that writes only “hello world” isn’t very useful. Let’s personalize this a
bit and add a parameter to the function. In fact, we don’t have to do anything at all,
because there is a default argument array that contains all of the arguments to the
function. This default array is available in the variable $args. Here’s a basic example:

PS (3) > function hello { "Hello there $args, how are you?" }
PS (4) > hello Bob
Hello there Bob, how are you?

This example uses string expansion to insert the value stored in $args into the string
that is emitted from the hello function. Now let’s see what happens with multiple
arguments:

PS (5) > hello Bob Alice Ted Carol
Hello there Bob Alice Ted Carol, how are you?

Following the string expansion rules described in chapter 3, the values stored in
$args get interpolated into the output string with each value separated by a space.
Or, more specifically, separated by whatever is stored in the $OFS variable. So let’s
take one last variation on this example. We’ll set $OFS in the function body with the
aim of producing a more palatable output. We’ll take advantage of the interactive
nature of the PowerShell environment to enter this function over several lines:
178 CHAPTER 7 FUNCTIONS AND SCRIPTS

PS (6) > function hello
>> {
>> $ofs=","
>> "Hello there $args and how are you?"
>> }
>>
PS (7) > hello Bob Carol Ted Alice
Hello there Bob,Carol,Ted,Alice and how are you?

That’s better. Now at least we have commas between the names. Let’s try it again,
with commas between the arguments:

PS (8) > hello Bob,Carol,Ted,Alice
Hello there System.Object[] and how are you?

Yuck! So what happened? Let’s define a new function to clear up what happened.

PS (1) > function count-args {
>> "`$args.count=" + $args.count
>> "`$args[0].count=" + $args[0].count
>> }
>>

This function will display the number of arguments passed to it as well as the number
of elements in the first argument. First we use it with three scalar arguments:

PS (2) > count-args 1 2 3
$args.count=3
$args[0].count=

As expected, it shows that we passed three arguments. It doesn’t show anything for
the Count property on $args[0] because $args[0] is a scalar (the number 1) and
consequently doesn’t have a Count property. Now let’s try it with a comma between
each of the arguments:

PS (3) > Count-Args 1,2,3
$args.count=1
$args[0].count=3

Now we see that the function received one argument, which is an array of three ele-
ments. And finally, let’s try it with two sets of comma-separated numbers:

PS (4) > count-args 1,2,3 4,5,6,7
$args.count=2
$args[0].count=3

The results show that the function received two arguments, both of which are arrays.
The first argument is an array of three elements and the second is an array with four
elements. Hmm, you should be saying to yourself—this sounds familiar. And it is—
the comma here works like the binary comma operator in expressions, as discussed in
chapter 5.
FUNCTION BASICS 179

Two values on the command line with a comma between them will be passed to
the command as a single argument. The value of that argument is an array of those
elements. This applies to any command, not just functions. If you want to copy three
files f1.txt, f2.txt, and f3.txt to a directory, the command would be

copy-item f1.txt,f2.txt,f3.txt target

The Copy-Item cmdlet receives two arguments: the first is an array of three file
names, and the second is a scalar element naming the target directory.

This is pretty simple and straightforward, but these characteristics allow you to
write some pretty slick commands. Here are two that aren’t in the PowerShell base
installation (although they maybe in the future).

function ql { $args }
function qs { "$args" }

They may not look like much, but they can streamline operations. The first function
is ql. which stands for “quote list”. This is a Perl-ism. Here’s what you can do with it.
Say you want to build up a list of the color names. To do this with the normal comma
operator, you’d do the following:

$col = "black","brown","red","orange","yellow","green",
 "blue","violet","gray","white"

which requires lots of quotes and commas. With the ql function, you could write it
this way:

$col = ql black brown red orange yellow green blue violet gray white

This is much shorter and requires less typing. Does it let you do anything you
couldn’t do before? No, but it lets you do something more efficiently when you have
to. Remember that elastic syntax concept? When you’re trying to fit a complex
expression onto one line, things like ql can help. What about the other function qs?
It does approximately the same thing, but uses string catenation to return the argu-
ments as a single string.

PS (1) > $string = qs This is a string
PS (2) > $string
This is a string
PS (3) >

Note that the arguments are concatenated with a single space between them. The
original spacing on the command line has been lost, but that usually doesn’t matter.

Now let’s write a function that takes two arguments and adds them together:

PS (1) > function Add-Two { $args[0] + $args[1] }
PS (2) > add-two 2 3
5

180 CHAPTER 7 FUNCTIONS AND SCRIPTS

Notice that most of the work in this function is getting the arguments out of the
array. One way we could make this a bit simpler is by using PowerShell’s multiple
assignment feature:

PS (3) > function Add-Two {
>> $x,$y=$args
>> $x+$y
>> }

>>
PS (4) > add-two 1 2
3

In this example, the first statement in the function assigns the values passed in $args
to the local variables $x and $y. Perl users will be familiar with this approach for deal-
ing with function arguments, and, while it’s a reasonable way to handle the problem,
it isn’t the way most languages deal with function parameters.

The $args approach will be familiar to Perl 5 or earlier users. Perl 6 has a
solution to the problem that is similar to what PowerShell does. I’d claim
great minds think alike, but it’s really just the most obvious way to solve
the problem.

For this reason, PowerShell provides other ways to declare the formal parameters.
We’ll cover those approaches in the next couple of sections.

7.2 FORMAL PARAMETERS AND THE
PARAM STATEMENT

With the basics out of the way, we’ll take a look at the more sophisticated features
PowerShell provides for declaring function parameters. We’ll cover untyped and
typed parameters and the advantages of each. We’ll cover how to handle variable
numbers of arguments and, finally, how to initialize parameters.

While the $args variable is a simple and automatic way of getting at the argu-
ments to functions, it takes a fair amount of work to do anything with a level of
sophistication. PowerShell provides a much more convenient (and probably more
familiar) way to declare parameters, which is shown in Figure 7.1.
Here’s a simple example of what this looks like:

function subtract ($from, $count) { $from - $count }

In this example, there are two formal parameters to the function: $from and
$count. When the function is called, each actual parameter will be bound to the cor-
responding formal parameter, either by position or by name. What does that mean?
Well, binding by position is obvious, as we can see:

PS (1) > subtract 5 3
2

AUTHOR’S
NOTE
FORMAL PARAMETERS AND THE PARAM STATEMENT 181

In this example, the first argument 5 is bound to the first formal parameter $x, and
the second argument is bound to the second parameter $y. Now let’s look at using
the parameter names as keywords:

PS (2) > subtract -from 5 -count 2
3
PS (3) > subtract -from 4 -count 7
3

What happens if you try and use the same parameter twice? You’ll receive an error
message that looks like this:

PS (4) > subtract -count 4 -count 7
subtract : Cannot bind parameter because parameter 'count' is spec
ified more than once. To provide multiple values to parameters tha
t can accept multiple values, use the array syntax. For example,
 "-parameter value1,value2,value3".
At line:1 char:25
+ subtract -count 4 -count <<<< 7

As the message says, you can’t specify a named parameter more than once. So we now
know that there are two ways to match format parameters with actual arguments.
Can we mix and match? Let’s try it.

PS (5) > subtract -from 5 6
-1

We see that it did work as one would expect. $from is set to 5, $count is set to 6,
and we know that 5 minus 6 is -1. Now let’s change which parameter is named.

PS (6) > subtract -count 5 6
1

function <name> (<parameter list>) { <statementList> }

function Keyword

The list of parameters for
the function.

List of statements that make up
the function body.

Braces mark beginning and end of
the function body.

The name of the
function.

Figure 7.1 This diagram shows the basic syntax for defining a function in

PowerShell. The parameter list is optional.
182 CHAPTER 7 FUNCTIONS AND SCRIPTS

Now $count is set to 5 and $from is set to 6. This may seem bit odd. Here’s how it
works. Any named parameters are bound and then removed from the list of parame-
ters that still need to be bound. These remaining parameters are then bound position-
ally. If no named parameters are specified in this example then $from is position 0
and $count is position 1. If we specify -from then $from is bound by name and
removed from the list of things that need to be bound positionally. This means that
$count, which is normally in position 2, is now in position 1. Got all that? Probably
not, as I have a hard time following it myself. All you really need to think about is
whether you’re using named parameters or positional ones. Try to avoid mixing and
matching if possible. If you do want to mix and match, always put the parameters
that you want to specify by name at the end of the parameter list. In other words, put
them at the end of the param statement or the function argument list. That way they
don’t affect the order of the parameters you want to bind by position.

Gotcha #1: Calling functions in PowerShell. A lot of people with previous
programming experience see the word function and will try to call a func-
tion like subtract by doing

subtract(1,2)

PowerShell will happily accept this since there’s nothing syntactically wrong
with it. The problem is that the statement is totally wrong semantically. Func-
tions (as opposed to methods on objects) in PowerShell are commands like
any other command. Arguments to commands are separated by spaces. If
you want to provide multi-valued argument for a single command then you
separate those multiple values with commas (more on this later). Also, pa-
rentheses are only needed if you want the argument to be evaluated as an
expression (see chapter 2 on parsing modes). So—what this “function call”
is actually doing is passing a single argument, which is an array of two values.
And that is just wrong. Consider yourself warned. Really. This has tripped
up some very smart people. If you remember this discussion, then someday,
somewhere, you’ll be able to lord this bit of trivia over your coworkers, crush-
ing their spirits like—oh—wait—sorry—it’s that darned inner-voice leaking
out again…

So far, all our work has been with typeless parameters, and this has its advantages. It
means that our functions can typically work with a wider variety of data types. But
sometimes you want to make sure that the parameters are of a particular type (or at
least convertible to that type). While you could do this the hard way and write a
bunch of type-checking code, PowerShell is all about making life easier for the user,
so let’s talk about a better way to do this by specifying typed parameters.

7.2.1 Specifying parameter types

Scripting languages don’t usually type the parameters to functions and, by default,
you don’t have to specify the types of parameters in PowerShell. But sometimes it can

AUTHOR’S
NOTE
FORMAL PARAMETERS AND THE PARAM STATEMENT 183

be quite useful. Adding these type constraints is what we’ll cover in this section. In
order to type-constrain a parameter, you provide a type literal before the variable
name in the parameter list. Here’s an example. Let’s define a function nadd that takes
two parameters that we want to be integers.

PS (1) > function nadd ([int] $x, [int] $y) {$x + $y}

Now we’ll use this function to add two numbers.

PS (2) > nadd 1 2
3

Adding 1 and 2 gives 3. No surprise there. Now let’s add two strings.

PS (3) > nadd "1" "2"
3

The answer is still 3. Because of the type constraints on the parameters, numeric
addition is performed even though we passed in two strings. Now let’s see what hap-
pens when we pass in something that can’t be converted to a number:

PS (4) > nadd @{a=1;b=2} "2"
nadd : Cannot convert "System.Collections.Hashtable" to "System.
Int32".
At line:1 char:5
+ nadd <<<< @{a=1;b=2} "2"

We get an error message mentioning where the function was used and why it failed.
Let’s define another function that doesn’t have the type constraints.

PS (5) > function add ($x, $y) {$x + $y}

Now we’ll call this function with a hashtable argument.

PS (6) > add @{a=1;b=2} "2"
You can add another hash table only to a hash table.
At line:1 char:28
+ function add ($x, $y) {$x + <<<< $y}

We still get an error, but notice where the error message is reported. Because it hap-
pened in the body of the function, the error message is reported in the function itself,
not where the function was called as it was in the previous function. It’s much more
useful for the user of the function to know where the call that failed was rather than
knowing where in the function it failed.

Now let’s look at the other two examples with the unconstrained function, first
with strings and then with numbers.

PS (7) > add "1" "2"
12
PS (8) > add 1 2
3

184 CHAPTER 7 FUNCTIONS AND SCRIPTS

This function has the normal polymorphic behavior we expect from PowerShell. The
type-constrained version only worked on numbers. Of course, if the arguments can
be safely converted to numbers then the operation will proceed. Let’s try the type-
constrained function with strings.

PS (9) > nadd "4" "2"
6

Because the strings “2” and “4” can be safely converted into numbers, they are, and
the operation proceeds. If not, as in the following example:

PS (10) > nadd "4a" "222"
nadd : Cannot convert value "4a" to type "System.Int32". Error:
"Input string was not in a correct format."
At line:1 char:5
+ nadd <<<< "4a" "222"

You’ll get a type conversion error. In effect, the type constraints on function parame-
ters are really casts, and follow the type conversion rules described in chapter 3.

If you are used to traditional object-oriented languages, you might expect
to be able to create overloads for a particular function name by specifying
different signatures. Overloading is not supported in version 1 of Power-
Shell. If you define a

function a ([int] $b) { }

and later define

function a ([string] $b) { }

the new definition will replace the old definition rather than adding a new
overload.

When we started our discussion of parameters, we used $args, which was a bit awk-
ward, but it let us specify a variable number of arguments to a function. In the next
section, we’ll see how we can do this even when we have a formal parameter list.

7.2.2 Handling variable numbers of arguments

Now that you know how to create explicit argument specifications, you’re probably
wondering if you can still handle variable numbers of arguments. The answer is yes.
Any remaining arguments that don’t match formal arguments will be captured in
$args. Here’s an example function that illustrates this.

PS (11) > function a ($x, $y) {
>> "x is $x"
>> "y is $y"
>> "args is $args"
>> }
>>

Now let’s use it with a single argument.

AUTHOR’S
NOTE
FORMAL PARAMETERS AND THE PARAM STATEMENT 185

PS (12) > a 1
x is 1
y is
args is

The single argument is bound to $x. $y is initialized to $null and $args has zero
elements in it. Now try it with two arguments.

PS (13) > a 1 2
x is 1
y is 2
args is

This time $x and $y are bound, but $args is still empty. Next try it with three argu-
ments, and then with five.

PS (14) > a 1 2 3
x is 1
y is 2
args is 3
PS (15) > a 1 2 3 4 5
x is 1
y is 2
args is 3 4 5

Now you can see that the extra arguments end up in $args.

Here’s a tip: if you want to make sure that no extra arguments are passed
to your function, check whether the length of the $args.length is zero
in the function body. If it’s not zero then some arguments were passed.

Earlier we mentioned that formal arguments that didn’t have corresponding actual
arguments were initialized to $null. While this is a handy default, it would be more
useful to have a way to initialize the arguments. We’ll look at that next.

7.2.3 Initializing function parameters

In this section, we’ll show you how to initialize the values of function parameters.
The syntax for this is shown in figure 7.2.

Let’s move right into an example:

PS (14) > function add ($x=1, $y=2) { $x + $y }

This function initializes the formal parameters $x to 1 and $y to 2 if no actual
parameters are specified. So when we use it with no arguments:

PS (15) > add
3

it returns 3. With one argument:

PS (16) > add 5
7

AUTHOR’S
NOTE
186 CHAPTER 7 FUNCTIONS AND SCRIPTS

it returns the argument plus 2, which in this case is 7. And finally with two actual
arguments

PS (17) > add 5 5
10

it returns the result of adding them. From this example, it’s obvious that you can ini-
tialize the variable to a constant value. What about something more complex? The
initialization sequence as shown in figure 7.2 says that an initializer can be an expres-
sion. If you remember from chapter 5, an expression can be a subexpression and a
subexpression can contain any PowerShell construct. In other words, an initializer can
do anything: calculate a value, execute a pipeline, reformat your hard-drive (not rec-
ommended), or send out for snacks from Tahiti by carrier pigeon (I’ve not had much
luck with this one).

Let’s try this out. We’ll define a function that returns the day of the week for a
particular date.

PS (28) > function dow ([datetime] $d = $(get-date))
>> {
>> $d.dayofweek
>> }
>>

This function takes one argument $d that is constrained to be something that
matches a date or time. If no argument is specified then it is initialized to the result of
executing the Get-Date cmdlet (which returns today’s date). Now let’s try it out.
First run it with no arguments:

function <name> ($p1 = <expr1> , $p2 = <expr2> ...) { <statementList> }

function Keyword

Parameter name followed by =
symbol followed by an expression

The name of the
function

List of parameter
specifications

Additional parameter specifications
are separated by commas.

Figure 7.2 This figure shows the more complex function definition syntax where initializer

expressions are provided for each variable. Note that the initializers are constrained to be ex-

pressions, but using the subexpression notation, you can actually put anything here.
FORMAL PARAMETERS AND THE PARAM STATEMENT 187

PS (29) > dow
Tuesday

And it prints out what today is. Then run it with a specific date:

PS (30) > dow "jun 2, 2001"
Saturday

and we see that June 2, 2001 was a Saturday. This is a simple example of using a sub-
expression to initialize a variable.

There is one interesting scenario that we should still talk about. What happens if
we don’t want a default value? In other words, how can we require the user to specify
this value? This is another place where you can use initializer expressions. Since the
expression is can do anything, it can also generate an error. Here’s how you can use
the throw statement to generate an error (we’ll cover the throw statement in detail
in chapter 9). First we define the function.

PS (31) > function zed ($x=$(throw "need x")) { "x is $x" }

Notice how the throw statement is used in the initializer subexpression for $x. Now
run the function—first with a value to see whether it works properly

PS (32) > zed 123
x is 123

and then without an argument

PS (33) > zed
need x
At line:1 char:25
+ function zed ($x=$(throw <<<< "need x")) { "x is $x" }

Without the argument, the initializer statement is executed and this results in an
exception being thrown. This is how you make arguments mandatory in PowerShell
version 1.

Finally, there is one other thing we need to discuss with function parameters: how
to define what are traditionally called flags or switches on commands.

7.2.4 Using switch parameters to define flags

In this section, we’re going to cover how to specify switch parameters, but before we
do that, let’s talk a bit more about parameter processing in general. In all shell envi-
ronments, commands typically have three kinds of parameters, as shown in table 7.1.

Table 7.1 Types of parameters found in all shells

Parameter type Description

Switches Switches are present or absent, such as Get-ChildItem –Recurse

Options Options take an argument value, such as Get-ChildItem -Filter *.cs

Arguments These are positional and don’t really have a name associated with them
188 CHAPTER 7 FUNCTIONS AND SCRIPTS

This pattern holds true for almost all shells, including cmd.exe, the Korn Shell, and
so on, although the specific details of the syntax may vary. In PowerShell we’ve canon-
icalized things a bit more. In other words, we’ve used formal terms for each of these,
as shown in table 7.2.

Arguments are called positional parameters because they are always associated with a
parameter name. However, it’s permitted to leave the name out and the interpreter
will figure out what parameter it is from its position on the command line. For exam-
ple, in the dir command, the -path parameter is a positional parameter whose posi-
tion is zero. Therefore the command

dir c:\

is equivalent to

dir -path c:\

and the system infers that “c:\” should be associated with -path.
Switch parameters are just the opposite; you specify the parameter but the argu-

ment is left out. The interpreter assigns the parameter a value based on whether the
parameter is present or absent. The -recurse parameter for dir is a good exam-
ple. If it’s present then you will get a recursive directory listing starting at the cur-
rent directory.

dir -recurse

So how do you indicate that something should be a switch parameter? Since PowerShell
characteristically uses types to control behavior, it makes sense to indicate that a param-
eter is a switch parameter by marking it with the type SwitchParameter. For con-
venience in scripts, this is written as [switch]. (In early versions of PowerShell, we used
the Boolean type for this, but co-opting a primitive type caused too many problems.)

Now, since the value of a switch is highly constrained, initializing switches is not
necessary or recommended. Here’s an example using a switch:

PS (1) > function get-soup (
>> [switch] $please,
>> [string] $soup= "chicken noodle"
>>)
>> {
>> if ($please) {
>> "Here's your $soup soup"
>> }

Table 7.2 Formal names for parameter types in PowerShell

Parameter Type Formal name in PowerShell

Switches Switch parameters

Options Parameters

Arguments Positional parameters
FORMAL PARAMETERS AND THE PARAM STATEMENT 189

>> else
>> {
>> "No soup for you!"
>> }
>> }
>>

Trying this function out:

PS (2) > get-soup
No soup for you!
PS (3) > get-soup -please
Here's your chicken noodle soup
PS (4) > get-soup -please tomato
Here's your tomato soup
PS (5) >

So if you say “please”, you get soup. If not, no soup for you!

You should never have a function, script, or cmdlet with a switch parameter
that you initialize to true, because this makes commands hard to use.
Switch parameters on a command should be designed such that they need
only be present to get the desired effect.

In all this discussion of parameters, we haven’t really discussed the lifetime of function
variables or when they are visible to other functions. This is called variable scoping. If
I have a function that uses a variable $x and it calls another function that also uses
$x, what happens? And if I set a variable in a function, can I still use that function
after the script has exited? All of these questions are answered in the next section.

7.2.5 Variables and scoping rules

In this section we’re going to cover the lifetime of variables, including when they
come into existence and where they are visible. The rules that cover these things are
called the scoping rules of the language. These scoping rules cover the lifetime and vis-
ibility of a variable.

In programming languages, there are two general types for scoping—lexical and
dynamic. Most programming languages and many scripting languages are lexically
scoped. In a lexically scoped language, names are visible in the module they are
defined in and in any nested modules, but are not visible outside the enclosing mod-
ule unless they are explicitly exported in some way. Since where they are defined con-
trols the visibility for the variable, this is determined at “compile” time and is
therefore called lexical (or sometimes static) scoping.

On the other hand, dynamic scoping involves when the variable is defined. In other
words, the visibility of the variable is controlled by the runtime behavior of the pro-
gram, not the compile-time behavior (hence the term “dynamic”). PowerShell has no
declaration statement like the Dim statement in Visual Basic; a variable is simply
defined on first assignment. We discussed this in chapter 5, but it’s more important
now. Let’s look at an example. First we’ll define two simple functions, “one” and “two”.

AUTHOR’S
NOTE
190 CHAPTER 7 FUNCTIONS AND SCRIPTS

PS (1) > function one { "x is $x" }
PS (2) > function two { $x = 22; one }

Function one prints out a string displaying the value of $x. Function two sets the
variable $x to a particular variable, and then calls function one. Now let’s try them
out. Before we work with the functions, we will set $x to 7 interactively, to help illus-
trate how scoping works.

PS (3) > $x=7

Now we’ll call function one.

PS (4) > one
x is 7

As expected, it prints out “x is 7”. Now let’s call function two.

PS (5) > two
x is 22

Not surprisingly, since two sets $x to 22 before calling one, we see “x is 22” being
returned. So what happened to $x? Let’s check:

PS (6) > $x
7

It’s still 7! Let’s call one again.

PS (7) > one
x is 7

It prints out “x is 7”. So what exactly happened here? When we first assigned 7 to $x,
we created a new global variable $x. When we called function one the first time, it
looked for a variable $x, found the global definition, and used that to print out the
message. When we called function two, it defined a new local variable called $x before
calling one. This variable is local; i.e., it didn’t change the value of the global $x, but
it did put a new $x on the scope stack. When it called one, this function searched up
the scope stack looking for $x, found the new variable created by function two, and
used that to print out “x is 22”. On return from function two, the scope containing its
definition of $x was discarded. The next time we called function one, it found the
top-level definition of $x. Now let’s compare this to a language that is lexically scoped.
I happen to have Python installed on my computer, so from PowerShell, I’ll start the
Python interpreter.

PS (1) > python
Python 2.2.3 (#42, May 30 2003, 18:12:08) [MSC 32 bit (Intel)] on
 win32
Type "help", "copyright", "credits" or "license" for more informa
tion.

Now let’s set the global variable x to 7. (Note—even if you aren’t familiar with Python,
these examples are very simple, so you shouldn’t have a problem following them.)
FORMAL PARAMETERS AND THE PARAM STATEMENT 191

>>> x=7

Now print out x to make sure it was properly set.

>>> print x
7

We see that it is, in fact, 7. Now let’s define a Python function one.

>>> def one():
... print "x is " + str(x)
...

And now define another function two that sets x to 22 and then calls one.

>>> def two():
... x=22
... one()
...

As with the PowerShell example, we call one and it prints out “x is 7”.

>>> one()
x is 7

Now call two.

>>> two()
x is 7

Even though two defines x to be 22, when it calls one, one still prints out 7. This is
because the local variable x is not lexically visible to one—it will always use the value
of the global x, which we can see hasn’t changed.

>>> print x
7

>>>

So now, hopefully, you have a basic understanding of how variables are looked up in
PowerShell. Sometimes, though, you want to be able to override the default lookup
behavior. We’ll discuss this in the next section.

UNIX shells used dynamic scoping because they didn’t really have a choice.
Each script is executed in its own process and receives a copy of the parent’s
environment. Any environment variables that a script defines will then be
inherited by any child scripts it, in turn, calls. The process-based nature of
the UNIX shells predetermines how scoping can work. The interesting thing
is that these semantics are pretty much what PowerShell uses, even though
we weren’t limited by the process boundary. We tried a number of different
schemes and the only one that was really satisfactory was the one that most
closely mimicked traditional shell semantics. I suppose this shouldn’t be a
surprise, since it’s worked pretty well for several decades now.

AUTHOR’S
NOTE
192 CHAPTER 7 FUNCTIONS AND SCRIPTS

7.2.6 Using variable scope modifiers

We’ve now arrived at the subject of variable scope modifiers. In the previous section
we discussed scope and the default PowerShell lookup algorithm. Now you’ll see that
you can override the default lookup by using a scope modifier. These modifiers look
like the namespace qualifiers mentioned in chapter 6. To access a global variable
$var, you would write:

$global:var

Let’s revisit the functions from the previous section.

PS (1) > function one { "x is $global:x" }

This time, in the function one, we’ll use the scope modifier to explicitly reference the
global $x.

PS (2) > function two { $x = 22; one }

The definition of function two is unchanged. Now set the global $x to 7 (commands
at the top level always set global variables, so you don’t need to use the global modifier).

PS (3) > $x=7

Now run the functions.

PS (4) > one
x is 7
PS (5) > two
x is 7

This time, because we told one to bypass searching the scope change for $x and go
directly to the global variable, calls to both one and two return the same result, “x is 7”.

But enough about putting stuff into functions, how about getting results out?
Let’s switch our focus to achieving returns for all our hard efforts. This is the topic of
the next section.

7.3 RETURNING VALUES FROM FUNCTIONS

Now it’s time to talk about returning values from functions. We’ve been doing this all
along of course, but there is something we need to highlight. Because PowerShell is a
shell, it doesn’t really return results—it writes output. As we’ve seen, the result of any
expression or pipeline is to emit the result. At the command line, if you type three
expressions separated by semicolons, the results of all three statements are output:

PS (1) > 2+2; 9/3; [math]::sqrt(27)
4
3
5.19615242270663

In this example, there were three statements in the list, so three numbers were dis-
played. Now let’s put this into a function.
RETURNING VALUES FROM FUNCTIONS 193

PS (2) > function numbers { 2+2; 9/3; [math]::sqrt(27) }

Now run that function.

PS (3) > numbers
4
3
5.19615242270663

Just as when we typed it on the command line, three numbers are output. Now let’s
run it and assign the results to a variable.

PS (4) > $result = numbers

Then check the content of that variable.

PS (5) > $result.length
3
PS (6) > $result[0]
4
PS (7) > $result[1]
3
PS (8) > $result[2]
5.19615242270663

From the output, we can see that $result contains an array with three values in it.
Here’s what happened. As each of the statements in the function was executed, the
result of that statement was captured in an array, and then that array was stored in
$result. The easiest way to understand this is to imagine variable assignments
working like redirection, except the result is stored in a variable instead of in a file.

Let’s try something more complex. The goal here is twofold. First, we want to
increase our understanding of how function output works. Second, we want to see how
to take advantage of this feature to simplify our scripts and improve performance.

Let’s redefine the function numbers to use a while loop that generates the num-
bers 1 to 10:

PS (11) > function numbers
>> {
>> $i=1
>> while ($i -le 10)
>> {
>> $i
>> $i++
>> }
>> }
>>

Now run it.

PS (12) > numbers
1
2

194 CHAPTER 7 FUNCTIONS AND SCRIPTS

3
4
5
6
7
8
9
10

And capture the results in a variable.

PS (13) > $result = numbers

What actually ended up in the variable? First let’s check the type:

PS (14) > $result.gettype().fullname
System.Object[]

And the length:

PS (15) > $result.length
10

The output of the function ended up in an array of elements, even though we never
mentioned an array anywhere. This should look familiar by now, because we talked
about it extensively in chapter 4 in our discussion of arrays. The PowerShell runtime
will spontaneously create a collection when needed. Compare this to the way you’d
write this function in a traditional language. Let’s rewrite this as a new function
tradnum. In the traditional approach, you have to initialize a result variable
$result to hold the array being produced, add each element to the array, then emit
the array.

PS (16) > function tradnum
>> {

>> $result = @()
>> $i=1
>> while ($i -le 10)
>> {
>> $result += $i
>> $i++
>> }
>> $result
>> }
>>

This is significantly more complex, in that you have to manage two variables in the
function now instead of one. If you were writing in a language that didn’t automati-
cally extend the size of the array, it would be even more complicated, as you would
have to add code to resize the array manually. And even though PowerShell will auto-
matically resize the array, it’s not very efficient compared to capturing the streamed
output. The point is to make you think about how you can use the facilities that
RETURNING VALUES FROM FUNCTIONS 195

PowerShell offers to improve your code. If you find yourself writing code that explic-
itly constructs arrays, you should consider looking at it to see if it can be rewritten to
take advantage of streaming instead.

Of course, every silver lining has a cloud. As wonderful as all of this is, there are
some potential pitfalls. We’ll cover what these are and how to go about debugging
them in the next section.

7.3.1 Debugging function output

When writing a function, there’s something you need to keep in mind. The result of
all statements executed will appear in the output of the function. This means that if
you add debug statements that write to the output stream, this debug output will be
mixed into the actual output of the function.

In text-based shells, the usual way to work around mixing debug informa-
tion with output is to write the debug messages to the error stream (stderr).
This works fine when the error stream is simple text; however, in Power-
Shell, the error stream is composed of error objects. All of the extra infor-
mation in these objects, while great for errors, makes them unpalatable for
writing simple debug messages. There are better ways of handling this, as
we’ll see in chapter 9 when we talk about debugging.

Here’s an example function where we’ve added a couple of debug statements:

PS (1) > function my-func ($x) {
>> "Getting the date"
>> $x = get-date
>> "Date was $x, now getting the day"
>> $day = $x.day
>> "Returning the day"
>> $day

>> }
>>

Let’s run the function.

PS (2) > my-func
Getting the date
Date was 5/17/2006 10:39:39 PM, now getting the day
Returning the day
17

We see the debug output as well as the result. Now let’s capture the output of the
function into a variable.

PS (3) > $x = my-func

We see no output, but neither do we see the debugging messages. Now look at what’s
in $x.

AUTHOR’S
NOTE
196 CHAPTER 7 FUNCTIONS AND SCRIPTS

PS (4) > $x
Getting the date
Date was 5/17/2006 10:39:39 PM, now getting the day
Returning the day
17

We see that everything is there. This is a trivial example and I’m sure it feels like we’re
beating it to death, but this is the kind of thing that leads to those head-slapping
how-could-I-be-so dumb moments in which you’ll be writing a complex script and
wonder why the output looks funny. Then you’ll remember that debugging statement
you forgot to take out. “Doh!” you cry, “How could I be so dumb!?”

This, of course, is not exclusive to PowerShell. Back before the advent of
good debuggers, people would do “printf-debugging” (named after the
printf output function in C). It wasn’t uncommon to see stray output in
programs because of this. Now with good debuggers, this is pretty infre-
quent. PowerShell provides debugging features that you can use instead of
“printf-debugging”, which we’ll cover in chapter 9.

Be careful also about doing something that emits objects when you didn’t expect them.
This usually happens when you’re using .NET methods. The problem is that in .NET
languages such as C#, the default behavior is to discard the result of an expression.

PowerShell always emits the result of expressions, so they unexpectedly appear in
your output. Most of the time this is fine, but there are some .NET framework meth-
ods that return values that are mostly never used. The best example is the Sys-
tem.Collections.ArrayList class. The Add() method on this class helpfully
returns the index of the object that was added by the call to Add() (I’m aware of no
actual use for this feature—it probably seemed like a good idea at the time). This
behavior looks like:

PS (1) > $al = new-object system.collections.arraylist
PS (2) > $al.count
0
PS (3) > $al.add(1)
0
PS (4) > $al.add(2)
1
PS (5) > $al.add(3)
2

Every time we call Add(), a number displaying the index of the added element is
emitted. Now say we write a function that copies its arguments into an ArrayList.
This might look like:

PS (6) > function addArgsToArrayList {
>> $al = new-object System.Collections.ArrayList
>> $args | foreach { $al.add($_) }
>> }
>>

AUTHOR’S
NOTE
RETURNING VALUES FROM FUNCTIONS 197

It’s a pretty simple function, but what happens when we run it? Take a look:

PS (7) > addArgsToArrayList a b c d
0
1
2
3

As you can see, every time we call Add(), a number gets returned. This isn’t very
helpful. To make it work properly, we need to discard this undesired output. Let’s fix
this. Here is the revised function definition.

PS (8) > function addArgsToArrayList {
>> $al = new-object System.Collections.ArrayList
>> $args | foreach { [void] $al.add($_) }
>> }
>>

It looks exactly like the previous one except for the cast to void in the third line. Now
let’s try it out.

PS (9) > addArgsToArrayList a b c d
PS (10) >

This time we don’t see any output, as desired. This is a tip to keep in mind when
working with .NET classes in functions.

7.3.2 The return statement

Now let’s talk about the return statement. So far we’ve talked about how functions
in PowerShell are best described as writing output rather than returning results. So
why do we need a return statement? Because sometimes you want to exit a function
early instead of writing the conditional statements you need to get the flow of control
to reach the end. In effect, the return statement is like the break statement we cov-
ered in chapter 6—it breaks to the end of the function.

It is possible to “return” a value from a function using the return statement.
This looks like

return 2+2

This is effectively shorthand for

write-object (2+2) ; return

We included the return statement in PowerShell because it’s a common pattern that
programmers expect to have. Unfortunately, it can sometimes lead to confusion for
new users and non-programmers. They forget that, because PowerShell is a shell, every
statement emits values into the output stream. Using the return statement can make
this somewhat less obvious. Because of this potential for confusion, you should gener-
ally avoid using the return statement unless you really need it to make your logic sim-
pler. Even then, you should probably avoid using it to return a value. The one
198 CHAPTER 7 FUNCTIONS AND SCRIPTS

circumstance where it makes sense is in a “pure” function where you’re only returning
a single value. For example, look at this recursive definition of the factorial function:

PS (5) > function fact ($x) {
>> if ($x -lt 2) {return 1}
>> $x * (fact ($x-1))
>> }
>>
PS (6) > fact 3
6

This is a simple function that returns a single value with no side-effects. In this case,
it makes sense to use the return statement with value.

The factorial of a number x is the product of all positive numbers less than
or equal to x. Therefore the factorial of 6 is
 6 * 5 * 4 * 3 * 2 * 1
which is really
 6 * (fact 5)
which, in turn, is
 6 * 5 * (fact 4)
and so on down to 1.

Factorials are useful in calculating permutations. Understanding permu-
tations is useful if you’re playing poker. This should not be construed as an
endorsement for poker—it’s just kind of cool. Bill Gates plays bridge.

7.4 USING FUNCTIONS IN A PIPELINE

So far we’ve only talked about using functions as standalone statements. But what
about using functions in pipelines? After all, PowerShell is all about pipelines, so
shouldn’t you be able to use functions in pipelines? Of course, the answer is yes with
some considerations that need to be taken into account. The nature of a function is
to take a set of inputs, process it, and produce a result. So how do we make the stream
of objects from the pipeline available in a function? This is accomplished through the
$input variable. When a function is used in a pipeline, a special variable $input is
available that contains an enumerator that allows you to process through the input
collection. Let’s see how this works:

PS (1) > function sum {
>> $total=0;
>> foreach ($n in $input) { $total += $n }
>> $total
>> }
>>

Here we’ve defined a function sum that takes no arguments but has one implied
argument, which is $input. It will add each of the elements in $input to $total

AUTHOR’S
GEEK
NOTE
USING FUNCTIONS IN A PIPELINE 199

and then return $total. In other words, it will return the sum of all the input
objects. Let’s try this on a collection of numbers:

PS (2) > 1..5 | sum
15

Clearly it works as intended.
We said that $input is an enumerator. You may remember our discussion of enu-

merators from chapter 6 when we talked about the $foreach and $switch variables.
The same principles apply here. You move the enumerator to the next element using
the MoveNext() method and get the current element using the Current property.
Here’s the sum function rewritten using the enumerator members directly.

PS (3) > function sum2 {
>> $total=0
>> while ($input.movenext())
>> {
>> $total += $input.Current
>> }
>> $total
>> }
>>

Of course, it produces the same result.

PS (4) > 1..5 | sum2
15

Let’s write a variation of this that works with something other than numbers. This
time we’ll write a function that has a formal parameter and also processes input. The
parameter will be the name of the property on the input object to sum up. Here’s the
function definition:

PS (7) > function sum3 ($p)
>> {
>> $total=0
>> while ($input.MoveNext())
>> {
>> $total += $input.current.$p
>> }
>> $total
>> }
>>

In line 6 of the function, you can see the expression $input.current.$p. This
expression returns the value of the property named by $p on the current object in
the enumeration. Let’s use this function to sum up the lengths of the files in the cur-
rent directory.

PS (8) > dir | sum3 length
9111
200 CHAPTER 7 FUNCTIONS AND SCRIPTS

We invoke the function passing in the string “length” as the name of the property to
sum. The result is the total of the lengths of all of the files in the current directory.

This shows that it’s pretty easy to write functions that you can use in a pipeline,
but there’s one thing we haven’t touched on. Because functions run all at once, they
can’t do streaming processing. In the previous example, where we piped the output of
dir into the function, what actually happened was that the dir cmdlet ran to com-
pletion and the accumulated results from that were passed as a collection to the func-
tion. So how can we use functions more effectively in a pipeline? That’s what we’ll
cover next when we talk about the concept of filters.

7.4.1 Filters and functions

In this section, we’ll talk about filters: a variation on the general concept of functions.
Where a function in a pipeline runs once, a filter is run for each input object coming
from the pipeline. The general form of a filter is shown in figure 7.3.

As you can see from the diagram, the only syntactic difference between a function
and a filter is the keyword. The significant differences are all semantic. A function
runs once and runs to completion. When used in a pipeline, it halts streaming—the
previous element in the pipeline runs to completion; only then does the function
begin to run. It also has a special variable $input defined when used as anything
other than the first element of the pipeline. By contrast, a filter is run once and to
completion for each element in the pipeline. Instead of the variable $input, it has a
special variable $_ that contains the current pipeline object.

filter <name> (<parameter list>) { <statementList> }

filter Keyword

The list of parameters for
the filter

List of statements that make up
the filter body

Braces mark beginning and end of
the filter body.

The name of the filter

Figure 7.3 This diagram shows how to define a filter in PowerShell. It’s identical

to the basic function definition except that it uses the filter keyword instead of

the function keyword.
USING FUNCTIONS IN A PIPELINE 201

At this point, we should look at an example to see what all this means. Let’s write a
filter to double the value of all of the input objects.

PS (1) > filter double {$_*2}
PS (2) > 1..5 | double
2
4
6
8
10

You should now be feeling a nagging sense of déjà vu. A little voice should be telling
you, “I’ve seen this before.” Remember the Foreach-Object cmdlet from chapter 6?

PS (3) > 1..5 | foreach {$_*2}
2
4
6
8
10

The Foreach-Object cmdlet is, in effect, a way of running an anonymous filter. By
anonymous, we mean that you don’t have to give it a name or predefine it. You just
use it when you need it. The ability to create named filters is also very useful.

Functions in a pipeline run when all of the input has been gathered. Filters run
once for each element in the pipeline. In the next section, we’ll talk about generaliz-
ing the role of a function so that it can be a first class participant in a pipeline.

7.4.2 Functions as cmdlets

We’ve seen how to write a function that sums up values in a pipeline but can’t stream
results. And we’ve seen how to write a filter to calculate the sum of values in a pipe-
line, but filters have problems with setting up initial values for variables or conduct-
ing processing after all of the objects have been received. It would be nice if we could
write user-defined cmdlets that can initialize some state at the beginning of the pipe-
line, process each object as it’s received, then do clean-up work at the end of the
pipeline. And of course we can. The full structure of a function cmdlet is shown in
figure 7.4.

In the figure you see that you can define a clause for each phase of the cmdlet pro-
cessing. This is exactly like the phases used in a compiled cmdlet, as mentioned in
chapter 2. The begin keyword specifies the clause to run before the first pipeline
object is available. The process clause is executed once for each object in the pipe-
line, and the end clause is run once all of the objects have been processed.

As with filters, the current pipeline object is available in the process clause in
the special variable $_. As always, an example is the best way to illustrate this.
202 CHAPTER 7 FUNCTIONS AND SCRIPTS

PS (1) > function my-cmdlet ($x) {
>> begin {$c=0; "In Begin, c is $c, x is $x"}
>> process {$c++; "In Process, c is $c, x is $x, `$_ is $_"}
>> end {"In End, c is $c, x is $x"}
>> }
>>

We defined all three clauses in this function. Each clause reports what it is and then
prints out the values of some variables. The variable $x comes from the command
line; the variable $c is defined in the begin clause, incremented in the process clauses,
and displayed again in the end clause. The process clause also displays the value of the
current pipeline object. Now let’s run it. We’ll pass the numbers 1 through 3 in
through the pipeline and give it an argument “22” to use for $x. Here’s what the out-
put looks like:

PS (2) > 1,2,3 | my-cmdlet 22
In Begin, c is 0, x is 22
In Process, c is 1, x is 22, $_ is 1
In Process, c is 2, x is 22, $_ is 2
In Process, c is 3, x is 22, $_ is 3

In End, c is 3, x is 22

As you can see, the argument 22 is available in all three clauses and the value of $c is
also maintained across all three clauses. What happens if there is no pipeline input?
Let’s try it.

PS (3) > my-cmdlet 33
In Begin, c is 0, x is 33
In Process, c is 1, x is 33, $_ is
In End, c is 1, x is 33

function <name> (<parameter list>)
{
 begin {
 <statementList>
 }
 process {
 <statementList>
 }
 end {
 <statementList>
 }
}

function Keyword
Function Name

List of formal
parameters to the

function

List of statements to process
in the begin phase

List of statements to process
for each pipeline object

List of statements to process
during the end phase

Figure 7.4 This shows the complete function definition syntax for a

function in PowerShell that will have cmdlet-like behavior.
USING FUNCTIONS IN A PIPELINE 203

Even if there is no pipeline input, the process clause is still run exactly once. Of course,
you don’t have to specify all three of the clauses. If you only specify the process
clause, you might as well just use the filter keyword, because the two are identical.

If you’ve been following along with the examples in this chapter, by now you’ll
have created quite a number of functions. Care to guess how to find out what you’ve
defined? We’ll cover how to do this in the next section.

7.5 MANAGING FUNCTIONS

Because it’s easy to create functions in PowerShell, it also needs to be easy to manage
those functions. Rather than provide a custom set of commands (or worse yet, a set of
keywords) to manage functions, we take advantage of the namespace capabilities in
PowerShell and provide a function drive. Since it’s mapped as a drive, you can get a
list of functions the same way you get a listing of the contents of any other drive. Let’s
use dir to find out about the mkdir function.

PS (7) > dir function:/mkdir

CommandType Name Definition
----------- ---- ----------
Function mkdir param([string[]]$pat...

By doing a dir of the path function:/mkdir, you can see the mkdir exists and is a
function. And of course wild cards can be used, so we could have just written “mk*”
as shown.

PS (8) > dir function:/mk*

CommandType Name Definition
----------- ---- ----------
Function mkdir param([string[]]$pat...

And, if you just do dir on the function drive, you’ll get a complete listing of all func-
tions. Let’s do this but just get a count of the number of functions.

PS (9) > (dir function:/).count
78

In my environment, I have 78 functions defined. Now let’s create a new one.

PS (10) > function clippy { "I see you're writing a function." }

And check the count again.

PS (11) > (dir function:/).count
79

Yes—there’s one more function than was there previously. Now check for the func-
tion itself.
204 CHAPTER 7 FUNCTIONS AND SCRIPTS

PS (12) > dir function:clippy

CommandType Name Definition
----------- ---- ----------
Function clippy "I see you're writin...

Running dir on function:clippy gives us the function definition entry for this
function. Now let’s remove it.

PS (13) > rm function:/clippy

And make sure that it’s gone.

PS (14) > (dir function:/).count
78
PS (15) > dir function:clippy
Get-ChildItem : Cannot find path 'clippy' because it does not ex
ist.
At line:1 char:4
+ dir <<<< function:clippie

Yes! We’ve removed clippy from the system.

Long-time Microsoft Office users will no doubt be feeling an intense burst
of satisfaction with this last example. We’ve all longed to eradicate that
annoying paperclip “assistant”, and at last we have the pleasure, if in name
only. And, even more amusing: Microsoft Word doesn’t even recognize
“clippy”—it keeps trying to autocorrect to “clippie”. Some unresolved is-
sues perhaps?

The techniques we’ve covered in this section allow you to manipulate the functions
defined in your current session. As with any drive, you can list the functions, create
new ones, delete them, and rename them. But regardless, all these functions will dis-
appear when the session ends and you exit PowerShell. What about permanent func-
tions? How do you define those? This is where scripts come in, and we’ll cover that
topic next.

7.6 SCRIPTS AT LONG LAST

All of the discussions up to this point have covered the basics of programming in
PowerShell. These same principles and features also apply to writing scripts. In fact, a
script is simply a piece of PowerShell code stored in a file. If you’ll remember, back in
chapter 1 we talked about how PowerShell has the world’s shortest “Hello world” pro-
gram, which is

PS (1) > "Hello world"
Hello world

Now let’s make this into a script. We’ll use redirection to write this command to a file
in the current directory called hello.ps1.

AUTHOR’S
NOTE
SCRIPTS AT LONG LAST 205

PS (2) > '"Hello world"' > hello.ps1

Note the double quoting in the example. We want the script to contain

"Hello world"

with the quotes intact, not

Hello world

Now let’s execute the script:

PS (3) > ./hello.ps1
Hello world

We see that the file executed and returned the expected phrase.

In this example, even though hello.ps1 is in the current directory, we had
to put “./” in front of it to run it. This is because PowerShell doesn’t exe-
cute commands out of the current directory by default. This prevents ac-
cidental execution of the wrong command. See chapter 13 on security for
more information.

Now there’s a possibility that instead of achieving the output you expected, you
received a nasty error message instead. This error message would look something like:

PS (5) > ./hello.ps1
The file C:\Documents and Settings\brucepay\hello.ps1 cannot be
loaded. The file C:\Documents and Settings\brucepay\hello.ps1 is
 not digitally signed. The script will not execute on the system
. Please see "get-help about_signing" for more details..
At line:1 char:11
+ ./hello.ps1 <<<<

This is another security feature in PowerShell. When the system is installed, by
default you can’t run scripts. This is controlled by the execution policy. The Execution
Policy setting controls what kind of scripts can be run and is intended to prevent
virus attacks like the I-love-you virus from a few years back. Users were being tricked
into accidentally executing code mailed to them. The default execution policy for
PowerShell prevents this type of attack.

Of course, a scripting tool is no good if you can’t script. There is a command
Set-Executionpolicy that can be used to change the default execution policy. If
you see that error on your system, you should run the following command:

PS (6) > Set-ExecutionPolicy remotesigned
PS (7) > ./hello.ps1
Hello world
PS (8) >

This will change the execution policy so that you can execute scripts that you create
yourself. It still won’t execute scripts that come from remote sources such as email or
are downloaded from a website. However, this is a generally safe policy to use with
PowerShell. Chapter 9 covers all of these security topics in detail.

AUTHOR’S
NOTE
206 CHAPTER 7 FUNCTIONS AND SCRIPTS

The RemoteSigned check depends on the mail tool or the web browser used
to do the download to set the Zone Identifier Stream to indicate where the
file came from. Internet Explorer and Microsoft Outlook do set this properly.

Now let’s look at scripts in detail. (Spoiler alert—scripts are almost exactly like func-
tions except that they live on disk instead of in memory.)

7.6.1 Passing arguments to scripts

Now that we know how to create and run scripts, how can we pass arguments to a
script? The answer is the same way we did it for basic functions—through the $args
variable. Let’s look at a modified version of the previous script. Again, we’ll use redi-
rection to create the script. In fact we’ll overwrite the old version of the script:

PS (8) > '"Hello $args"' > hello.ps1

and run it with an argument:

PS (9) > ./hello Bruce
Hello Bruce

Great—hello PowerShell! But if we don’t supply an argument:

PS (10) > ./hello
Hello

we get a very impersonal greeting. So let’s fix this up and change the script again. This
time we’ll take advantage of a here-string to generate a longer script.

PS (11) > @'
>> if ($args) { $name = "$args" } else { $name = "world" }
>> "Hello $name!"
>> '@ > hello.ps1
>>

This script has two lines. The first sets a local variable $name to the value of $args if
it’s defined. If it’s not defined then it sets $name to “world”. If we run the script with
no arguments, we get:

PS (12) > ./hello
Hello world!

the generic greeting. If we run it with an argument, we get a specific greeting:

PS (13) > ./hello Bruce
Hello Bruce!
PS (14) >

These are the same basic things we did with functions, and, as was the case with func-
tions, they have limitations. It would be much more useful to have named, typed
parameters as we did with functions. We could do the same multivariable assignment
trick again, but we really want actual language support for formal argument to
scripts. There’s a problem, though. The formal arguments to a function are defined

AUTHOR’S
NOTE
SCRIPTS AT LONG LAST 207

outside the body of the function. This isn’t possible to do with scripts since there’s no
“declaration”. The way we get around this is to introduce a new keyword in the
PowerShell language—param—which we cover in the next section,

7.6.2 The param statement

As mentioned in the previous section, if we want to specify formal parameters for a
script, we need a new keyword to do this. This is the purpose of the param state-
ment. Note that the param statement must be the first executable line in the script.
Only comments and empty lines may precede it. Let’s visit our hello example one
more time. Again we’ll use a here-string and redirection to create the script.

PS (14) > @'
>> param($name="world")
>> "Hello $name!"
>> '@ > hello.ps1
>>

It’s still two lines, but this time we explicitly name the variable, making the script
clearer and simpler. Of course, when we run it, we find the expected results.

PS (15) > ./hello
Hello world!
PS (16) > ./hello Bruce
Hello Bruce!
PS (17) >

For amusement purposes, here’s the script being generated all on one line.

PS (17) > 'param($name="world") "Hello $name"' > hello.ps1
PS (18) > ./hello
Hello world
PS (19) > ./hello Bruce
Hello Bruce

This example illustrates that there is no need for any kind of separator after the
param statement for the script to be valid. Now let’s talk about some more of the
ways that functions and scripts aren’t quite the same.

7.6.3 Scopes and scripts

In section 7.3, we talked about the scoping rules for functions. These same general
rules also apply to scripts. Variables are created when they are first assigned. They are
always created in the current scope, so a variable with the same name in an outer (or
global) scope is not affected. In both scripts and functions, you can use the $glo-
bal:name scope modifier to explicitly modify a global variable.

Scripts do introduce one extra named scope, however, called the script scope. This
scope modifier is intended to allow functions defined in a script to affect the “global”
state of the script without affecting the overall global state of the interpreter. Let’s
look at an example. First, define a global $x to be 1.

PS (1) > $x = 1
208 CHAPTER 7 FUNCTIONS AND SCRIPTS

Then create a script called my-script. In this script, we’ll create a function called
lfunc. This lfunc function will define a function-scoped variable $x to be 100 and
a script-scoped variable $x to be 10. The script itself will run this function and then
print out the script-scoped variable x. We’ll use a here-string and redirection to create
the script interactively.

PS (2) > @'
>> function lfunc { $x = 100; $script:x = 10 ; "lfunc: x = $x"}
>> lfunc
>> "my-script:x = $x"
>> '@ > my-script.ps1
>>

Now let’s run the script.

PS (3) > ./my-script.ps1
lfunc: x = 100
my-script:x = 10

We see that the function scoped variable $x was 100; the script scoped $x was 10

PS (4) > "global: x = $x"
global: x = 1

while the global $x is still 1.

7.6.4 Exiting scripts and the exit statement

So far we’ve seen that we can exit scripts or functions simply by getting to the end of
the script or function. We’ve also seen the return statement, which will let you exit
from a function. In fact, what it does is let you exit from the current scope, whether that
scope is a function or script. But what happens when you want to cause a script to exit
from within a function defined in that script? One way to do this would be to use a
script-scoped variable and conditionals, but that would be pretty awkward. To make
this easier, PowerShell has the exit keyword. (You’ve probably already been using this
to exit from PowerShell.) When exit is used in a script, it exits that script. This is true
even when called from a function in that script. Here’s what that looks like:

PS (1) > @'
>> function callExit { "calling exit from callExit"; exit}
>> CallExit
>> "Done my-script"
>> '@ > my-script.ps1
>>

The function CallExit defined in this script calls exit. Since the function is called
before the line that emits

 "Done my-script"

we shouldn’t see this line emitted. Let’s run it:
SCRIPTS AT LONG LAST 209

PS (2) > ./my-script.ps1
calling exit from CallExit

We see that the script was correctly terminated by the call to exit in the function
CallExit.

The exit statement is also how we set the exit code for the PowerShell process
when calling PowerShell.exe from another program. Here’s an example that shows
how this works. From within cmd.exe, we’ll run PowerShell.exe, passing it a string to
execute. This “script” will emit the message “Hi there” and then call exit with an exit
code of 17.

C:\>powershell "'Hi there'; exit 17"
Hi there

And now we’re back at the cmd.exe prompt. Cmd.exe makes the exit code of a pro-
gram it’s run available in the variable ERRORLEVEL, so we’ll check that variable:

C:\>echo %ERRORLEVEL%
17

We see that it is 17 as expected. This shows how a script executed by PowerShell can
return an exit code to the calling process.

Before we move on, let’s look at one more thing that can trip people up. Take a
second look at what we actually ran in this example. The arguments to Power-
Shell.exe are actually accumulated and then treated as a script to exit. This is impor-
tant to remember when we try to run a script using PowerShell from cmd.exe. Here’s
the problem people run into: because the arguments to the PowerShell.exe are a
script to execute, not the name of a file to run, if the path to that script has a space in
it, then, since PowerShell treats the spaces as delimiters, we’ll get an error. Consider a
script called “my script.ps1”. When we try to run this by doing:

 PowerShell "./my script.ps1"

PowerShell will complain about “my” being an unrecognized command. It treated
“my” as a command name and “script.ps1” as an argument to that command. To exe-
cute a script with a space in the name, we need to do the same thing we’d do at the
PowerShell command prompt: put the name in quotes and use the call (&) operator:

 PowerShell.exe "& './my script.ps1'"

Now the script will be run properly. This is one of the areas where having two types
of quotes comes in handy. Also note that we still have to use the relative path to find
the script if it’s in the current directory.

7.6.5 Dotting scripts and functions

There’s one last topic that we need to cover with respect to functions, scripts, and
scoping, and this is something called “dotting” a script or function.
210 CHAPTER 7 FUNCTIONS AND SCRIPTS

The terminology used here comes from UNIX shells. Depending on your
regional background, you may consider the “correct” term to be, variously,
“dotting”, “sourcing”, or “dot sourcing”. It’s entertaining to see regional
terminology even within a single technology community. In fact, this is
very reminiscent of “The Great Pop vs. Soda Controversy”. In the United
States, people refer to soft drinks as “pop”, “soda”, or “soda pop”, depend-
ing on what part of the country they come from. This latter phenomenon
is (startlingly) well documented at http://www.popvssoda.com.

As we’ve discussed, we usually only care about the results of a function and want all of
the intermediate variables and so on discarded when the script or function exits. This
is why scripts and functions get their own scope. But sometimes you do care about all
of the intermediate by-products. This is typically the case when you want to create a
library of functions or variable definitions. In this situation, you want the script to
run in the current scope.

This is how cmd.exe works by default, as this example shows. We have a
cmd file foo.cmd

C:\files>type foo.cmd
set a=4

now set a variable a to 1 and display it:

C:\files>set a=1
C:\files>echo %a%
1

Next run the cmd file

C:\files>foo
C:\files>set a=4

and we see that the variable has been changed.

C:\files>echo %a%
4

As a consequence of this behavior, it’s common to have cmd files that do
nothing but set a bunch of variables. To do this in PowerShell, you would
dot the script.

So how do you “dot” a script? By putting a dot or period in front of the name when
you execute it. Note that there has to be a space between the dot and the name, oth-
erwise it will be considered part of the name. Let’s look at an example. First we create
a script that sets $x to 22.

PS (5) > @'
>> "Setting x to 22"
>> $x = 22
>> '@ > my-script.ps1
>>

AUTHOR’S
NOTE

AUTHOR’S
NOTE
SCRIPTS AT LONG LAST 211

and we’ll test it. First set $x to a known value

PS (6) > $x=3
PS (7) > $x
3

then run the script as we would normally:

PS (8) > ./my-script
Setting x to 22

Checking $x, we see that it is (correctly) unchanged.

PS (9) > $x
3

Now we’ll dot the script.

PS (10) > . ./my-script
Setting x to 22
PS (11) > $x
22

This time $x is changed. What follows the . isn’t limited to a simple file name. It
could be a variable or expression, as was the case with “&”:

PS (12) > $name = "./my-script"
PS (13) > . $name
Setting x to 22

The last thing to note is that dotting works for both scripts and functions. Let’s
define a function to show this:

PS (17) > function set-x ($x) {$x = $x}
PS (18) > . set-x 3
PS (19) > $x

3

In this example, we define the function set-x and dot it, passing in the value 3. The
result is that the global variable $x is set to 3.

7.7 SUMMARY

This chapter finally introduced scripting and programming in general in PowerShell.
While there was a lot of material, the following are the key points:

• PowerShell programming can be done either with functions or scripts. Func-
tions are created using the function keyword, whereas scripts are simply
pieces of PowerShell script text stored in a file.

• In PowerShell, scripts and functions are closely related. The same principles and
techniques apply to both.
212 CHAPTER 7 FUNCTIONS AND SCRIPTS

• Parameters can be specified for functions either immediately after the func-
tion keyword or in the body of the function using the param keyword. In
scripts, only the param keyword can be used.

• PowerShell uses dynamic scoping for variables. You can modify how a variable
name is resolved by using the scope modifiers in the variable names.

• Functions and scripts stream their output. In other words, they return the
results of every statement executed as though it were written to the output
stream. This feature means that you almost never have to write your own code
to accumulate results.

• Because of the differences between how functions work in PowerShell and how
they work in more conventional languages, you may receive some unexpected
results when creating your functions, so you picked up some tips on debugging
these problems.

• Functions can be used as simple functions, filters, or as full-fledged cmdlets.

• The function drive is used to manage the functions defined in your session.
This means that you use the same commands you use for managing files to
manage functions.

Even though we covered a lot of material in this chapter, we’ve really only covered the
surface aspects of programming with PowerShell. In chapter 8, we’ll cover scriptblocks,
which are the objects underlying the infrastructure for scripts and functions. We’ll
talk about how you can use these scriptblocks to extend the PowerShell language,
extend existing objects, and even create your own objects.
SUMMARY 213

C H A P T E R 8

Scriptblocks and objects

8.1 Scriptblock basics 215
8.2 Building and manipulating

objects 222
8.3 A closer look at the type-system

plumbing 233

8.4 Extending the PowerShell
language 237

8.5 Type extension 243
8.6 Building code at runtime 245
8.7 Summary 249
Philosophy have I digested,
The whole of Law and Medicine,
From each its secrets I have wrested,
Theology, alas, thrown in.
Poor fool, with all this sweated lore,
I stand no wiser than I was before.

 —Johann Wolfgang Goethe, Faust

Greek letters are cool…

 —Not actually a quote from Beavis and Butthead

Chapter 7 covered the basic elements of programming in PowerShell: functions and
scripts. In this chapter, we’ll take things to the next level and talk about metaprogram-
ming. Metaprogramming is the term used to describe the activity of writing programs
that write or manipulate other programs. If you’re not already familiar with this con-
cept, you may be asking why you should care. In chapter 1, we talked about designing
214

classes and how hard it is to get those designs right. In most environments, if the
designer makes a mistake then the user is stuck with the result. This is not true in Pow-
erShell. Metaprogramming lets us delve into the heart of the system and make things
work the way we need them to. Here’s an analogy that should give you the full picture.

Imagine buying a computer that was welded shut. There is still a lot you can do
with it—run all the existing programs and even install new programs. But there are
some things you can’t do. If it doesn’t have any USB ports then you can’t add them.
If it doesn’t have any way to capture video, you can’t add that either without open-
ing the case. And even though most people buy a computer with the basic features
they need and never add new hardware, a case that’s welded shut allows for no hard-
ware tinkering.

Traditional programming languages are much like the welded computer. They
have a basic set of features, and while you can extend what they do by adding librar-
ies, you can’t really extend the core capabilities of the language. For example, you
can’t add a new type of looping statement. On the other hand, in a language that
supports metaprogramming, you can undertake such activities as adding new control
structures. This is how the Where-Object and Foreach-Object cmdlets are
implemented. They use the metaprogramming features in PowerShell to add new
language elements. You can even create your own versions of these commands.
Metaprogramming is one of the features that make dynamic languages such as Pow-
erShell extremely powerful. That power translates into dramatic improvements in
conceptual and code simplicity. Investing the time to learn how to use PowerShell’s
metaprogramming capabilities can significantly increase your productivity with Pow-
erShell. Now let’s get started with cracking open the case on PowerShell.

We’ll begin with a discussion of a feature in the PowerShell language called script-
blocks. This discussion takes up the first part of this chapter and lays the groundwork
for the rest of what we’ll discuss. With the basic material out of the way, we’ll look at
how and where this scriptblock feature is used in PowerShell. We’ll look at the role
scriptblocks play in the creation of custom objects and types, and how they can be
used to extend the PowerShell language. We’ll go through an example that uses less
than a hundred lines of PowerShell script to add a new “keyword” that allows you to
define your own classes in PowerShell. We’ll also cover several cmdlets that make use
of these objects, and we’ll wrap up with a look at some programming patterns that
take advantage of scriptblocks. (Programming patterns are common approaches to
solving a particular class of problems—in other words, common sense with a fancy
name.) But first we need to understand scriptblocks themselves.

8.1 SCRIPTBLOCK BASICS

In this section we’ll talk about how to create and use scriptblocks. We’ll begin by
looking at how commands are invoked so we can understand all the ways to invoke
scriptblocks. Next we’ll cover the syntax for scriptblock literals and the various types
of scriptblocks you can create. This includes using scriptblocks as functions, as filters,
SCRIPTBLOCK BASICS 215

and as cmdlets. Finally we’ll look at how we can use scriptblocks to define new func-
tions at runtime. Let’s dive into the topic by starting with definitions.

In PowerShell, the key to metaprogramming (writing programs that write or
manipulate other programs) is something called the scriptblock. This is a block of
script code that exists as an object reference, but does not require a name. The
Where-Object and Foreach-Object cmdlets rely on scriptblocks for their imple-
mentation. In the example

1..10 | foreach { $_ * 2 }

the expression in braces “{ $_ * 2 }” is actually a scriptblock. It’s a piece of code that
is passed to the Foreach-Object cmdlet and is called by the cmdlet as needed.

So that’s all a scriptblock is—a piece of script in braces—but it’s the key to all of
the advanced programming features in PowerShell.

What we call scriptblocks in PowerShell are called anonymous functions or
sometimes lambda expressions in other languages. The term lambda comes
from the lambda calculus developed by Alonzo Church and Stephen Cole
Kleene in the 1930s. A number of languages, including Python and dialects
of LISP, still use lambda as a language keyword. In designing the PowerShell
language, we felt that calling a spade and spade (and a scriptblock a script-
block) was more straightforward (the coolness of using Greek letters aside).

We’ve said that scriptblocks are anonymous functions, and of course functions are
one of the four types of commands. But wait! You invoke a command by specifying
its name. If scriptblocks are anonymous, they have no name—so how can you invoke
them? This necessitates one more diversion before we really dig into scriptblocks.
Let’s talk about how commands can be executed.

8.1.1 Invoking commands

The way to execute a command is just to type its name followed by a set of argu-
ments, but sometimes you can’t type the command name as is. For example, you
might have a command with a space in the name. You can’t simply type the com-
mand because the space would cause part of the command name to be treated as an
argument. And you can’t put it in quotes, as this turns it into a string value. So you
have to use the call operator “&”. If, for instance, you have a command called “my
command”, you would invoke this command by typing the following:

& "my command"

The interpreter sees the call operator and uses the value of the next argument to look
up the command to run. This process of looking up the command is called command
discovery. The result of this command discovery operation is an object of type Sys-
tem.Management.Automation.CommandInfo, which tells the interpreter what
command to execute. There are different subtypes of CommandInfo for each of the
types of PowerShell commands. In the next section, we’ll look at how to obtain these
objects and how to use them.

AUTHOR’S
NOTE
216 CHAPTER 8 SCRIPTBLOCKS AND OBJECTS

8.1.2 Getting CommandInfo objects

We’ve mentioned the Get-Command cmdlet before as a way to attain information
about a command. For example, to get information about the Get-ChildItem
cmdlet, you’d do the following:

PS (1) > get-command get-childitem

CommandType Name Definition
----------- ---- ----------
Cmdlet Get-ChildItem Get-ChildItem [[-Pat...

This shows you the information about a command: the name of the command, the
type of command, and so on.

In the previous Get-Command example, the command’s defintion was
truncated to fit the book-formatting requirements. You can control how
this information is described by using the Format-List and Format-
Table commands.

This is useful as a kind of lightweight help, but in addition to displaying information,
the object returned by Get-Command can be used with the call operator to invoke
that command. This is pretty significant. This extra degree of flexibility, invoking a
command indirectly, is the first step on the road to metaprogramming.

Let’s try this out—we’ll get the CommandInfo object for the Get-Date command.

PS (1) > $d = get-command get-date
PS (2) > $d.CommandType
Cmdlet
PS (3) > $d.Name
Get-Date

As we can see from this example, the name “get-date” resolves to a cmdlet with the
name “get-date”. Now let’s run this command using the CommandInfo object with
the call operator:

PS (4) > & $d

Sunday, May 21, 2006 7:29:47 PM

It’s as simple as that. So why do we care about this? Because it’s a way of getting a handle
to a specific command in the environment. Say we defined a function “get-date”.

PS (1) > function get-date {"Hi there"}
PS (2) > get-date
Hi there

Our new get-date command outputs a string. Because PowerShell looks for func-
tions before it looks for cmdlets, this new function definition hides the Get-Date
cmdlet. Even using “&” with the string “get-date” still runs the function:

PS (3) > & "get-date"
Hi there

AUTHOR’S
NOTE
SCRIPTBLOCK BASICS 217

Since we created a second definition for get-date (the function), now if you use
Get-Command you will see two definitions. So how do we unambiguously select the
cmdlet Get-Date?

PS (4) > get-command get-date

CommandType Name Definition
----------- ---- ----------

Cmdlet Get-Date Get-Date [[-Date] <D...
Function get-date "Hi there"

One way is to select the CommandInfo object based on the type of the command:

PS (5) > get-command -commandtype cmdlet get-date

CommandType Name Definition
----------- ---- ----------
Cmdlet Get-Date Get-Date [[-Date] <D...

Let’s put the result of this command into a variable.

PS (6) > $ci = get-command -commandtype cmdlet get-date

and then run it using the call operator.

PS (7) > &$ci

Sunday, May 21, 2006 7:34:33 PM

The Get-Date cmdlet was run as expected. Another way to select which command
to run, since Get-Command returns a collection of objects, is to index into the collec-
tion to get the right object:

PS (8) > &(get-command get-date)[0]

Sunday, May 21, 2006 7:41:28 PM

Here we used the result of the index operation directly with the call operator to run
the desired command.

This is all interesting, but what does it have to do with scriptblocks? We’ve dem-
onstrated that you can invoke a command through an object reference instead of by
name. This was the problem we set out to work around. Scriptblocks are functions
that don’t have names; so, as you might expect, the way to call a scriptblock is to use
the call operator. Here’s what that looks like:

PS (1) > & {param($x,$y) $x+$y} 2 5
7

In this example, the scriptblock is

{param($x,$y) $x+$y}

We called it with two arguments, 2 and 5, so the result of executing the scriptblock is 7.
218 CHAPTER 8 SCRIPTBLOCKS AND OBJECTS

8.1.3 The ScriptBlock literal

Now we’ll take a detailed look at the syntax for creating a scriptblock. We’ll cover
how to define a scriptblock that acts as a function, how to define one that acts like a
filter, and finally how to define a scriptblock cmdlet.

What we’ve been writing to create scriptblocks is called a scriptblock literal—in
other words, a chunk of legitimate PowerShell script surrounded by braces. The syn-
tax for this literal is shown in figure 8.1.

The definition of a scriptblock looks more or less like the definition of a function,
except the function keyword and function name are missing. If the param statement
is not present then the scriptblock will get its arguments through $args, exactly as a
function would.

The param statement in PowerShell corresponds to the lambda keyword
in other languages. For example, the PowerShell expression

& {param($x,$y) $x+$y} 2 5

is equivalent to the LISP expression

(lambda (x y) (+ x y)) 2 5)

or the Python expression

(lambda x,y: x+y)(2,5)

Also note that, unlike Python lambdas, PowerShell scriptblocks can con-
tain any collection of legal PowerShell statements.

Scriptblocks, like regular functions or scripts, can also behave like cmdlets. In other
words, they can have one or all of the begin, process, or end clauses that you can

{ param (<parameter list>) <statementList> }

param Keyword The list of parameters for
the function

List of statements that make up
the scriptblock body

Braces mark beginning and end of
the scriptblock body

Figure 8.1 This shows how to define a simple scriptblock. Note that the

param statement is optional, so a minimal scriptblock only has the braces.

AUTHOR’S
NOTE
SCRIPTBLOCK BASICS 219

have in a function or script. Figure 8.2 shows the most general form of the script-
block syntax, showing all three clauses.

As was the case with a function cmdlet, you don’t have to define all the clauses.
Here’s an example that uses only the process clause.

PS (1) > 1..5 |&{process{$_ * 2}}
2
4
6
8
10

A scriptblock written this way works like the filters we saw in chapter 7. It also works
like the Foreach-Object cmdlet, as shown in the next example:

PS (2) > 1..5 |foreach {$_ * 2}
2
4
6
8
10

The Foreach-Object cmdlet is effectively a shortcut for the more complex script-
block construction.

8.1.4 Defining functions at runtime

In earlier sections, we said that scriptblocks were functions without names. The converse
is also true—functions are scriptblocks with names. So how are the two related? In chap-
ter 7, we showed you how to manage the functions in your PowerShell session using the
function: drive. To get a list of functions, you could do a dir of that drive:

dir function:/

{
 param (<parameter list>)
 begin {
 <statementList>
 }
 process {
 <statementList>
 }
 end {
 <statementList>
 }
}

param Keyword
List of formal

parameters to the
function

List of statements to process
in the begin phase

List of statements to process
for each pipeline object

List of statements to process
during the end phase

Figure 8.2 How to define a scriptblock that works like a cmdlet.
220 CHAPTER 8 SCRIPTBLOCKS AND OBJECTS

You could also delete or rename functions. But we didn’t cover the whole story. In
fact, the function: drive is, in effect, a set of variables containing scriptblocks. Let’s
explore this further. We’ll define our favorite function foo:

PS (1) > function foo {"2+2"}
PS (2) > foo
4

We can use the dir cmdlet to get the command information from the function provider:

PS (3) > dir function:foo

CommandType Name Definition
----------- ---- ----------
Function foo 2+2

Let’s use Get-Member to get more information about the object that was returned:

PS (4) > dir function:foo | gm sc*

 TypeName: System.Management.Automation.FunctionInfo

Name MemberType Definition
---- ---------- ----------
ScriptBlock Property System.Management.Automation.ScriptBlo...

The object that came back to us was a FunctionInfo object. This is the subclass of
CommandInfo that is used to represent a function. As we see, one of the properties
on the object is the scriptblock that makes up the body of the function. Let’s retrieve
that member:

PS (5) > (dir function:foo).ScriptBlock
2+2

The scriptblock, when displayed as a string, shows the source code for the script-
block. Another, simpler way to get back the scriptblock that defines a function is to
use the variable syntax:

PS (6) > $function:foo
2+2
PS (7) > $function:foo.gettype().Fullname
System.Management.Automation.ScriptBlock

Now here’s the interesting part. Let’s change the definition of this function. We can
do this simply by assigning a new scriptblock to the function:

PS (8) > $function:foo = {"Bye!"}

When we run the function again,

PS (9) > foo
Bye!
SCRIPTBLOCK BASICS 221

we see that it’s changed. The function keyword is, in effect, shorthand for assigning
to a name in the function provider.

Now that we know how to manipulate scriptblocks and functions, let’s take this
one step further. As we discussed in chapter 1, objects encapsulate data and code.
Now that we have a way of manipulating code, we can take the next step and look
into building objects.

8.2 BUILDING AND MANIPULATING OBJECTS

Let’s switch gears here. Up to this point in the chapter we’ve been talking about
scriptblocks. Now it’s time to start talking about objects. Here’s why: at their core, as
we discussed in chapter 1, objects are a binding of data and behaviors. These behav-
iors are implemented by blocks of code. We needed to know how to build the blocks
of code, scriptblocks, before we could talk about building objects. With a good
understanding of scriptblocks, we may now discuss manipulating and building
objects in PowerShell.

In chapter 2, we talked extensively about types. Now we’re concerned with
objects; that is, instances of types. A type is the pattern or template that describes an
object, and an object is an instance of that pattern. In statically typed languages such
as C#, once an object is instantiated, its interfaces can’t be changed. With dynamic
languages such as PowerShell (or Ruby or Python), this isn’t true. Dynamic lan-
guages allow you to alter the set of members available at runtime. In the rest of this
section, we’ll cover how to do this in PowerShell. We start with a discussion of how
to examine existing members, followed by a look at the types of members available on
an object. Then we’ll cover the various ways to add members to an object, and finally
we’ll take a look at the plumbing of the PowerShell type system to give you a sense of
the flexibility of the overall system.

8.2.1 Looking at members

An object’s interface is defined by the set of public members it exposes. Public mem-
bers are the public fields, properties, and methods of the class. As always, the easiest
way to look at those members is with the Get-Member cmdlet. For example, here are
the members defined on an integer:

PS (1) > 12 | get-member

 TypeName: System.Int32

Name MemberType Definition
---- ---------- ----------
CompareTo Method System.Int32 CompareTo(Int32 value), S...
Equals Method System.Boolean Equals(Object obj), Sys...
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
GetTypeCode Method System.TypeCode GetTypeCode()
ToString Method System.String ToString(), System.Strin...
222 CHAPTER 8 SCRIPTBLOCKS AND OBJECTS

Note that this doesn’t show you all of the members on an [int]. It only shows you
the instance members. You can also use Get-Member to look at the static members:

PS (2) > 12 | get-member -static

 TypeName: System.Int32

Name MemberType Definition
---- ---------- ----------
Equals Method static System.Boolean Equals(Objec...
Parse Method static System.Int32 Parse(String s...
ReferenceEquals Method static System.Boolean ReferenceEqu...
TryParse Method static System.Boolean TryParse(Str...
MaxValue Property static System.Int32 MaxValue {get;}
MinValue Property static System.Int32 MinValue {get;}

We’ll use this mechanism to look at the members we’ll be adding to objects in the
next couple of sections.

8.2.2 Synthetic members

One of the most powerful features in the PowerShell environment is the ability to
extend existing object types and instances. This allows PowerShell to perform adapta-
tion across a wide variety of different types of data. By adaptation, we mean overlaying
a common set of interfaces onto existing data sources. This may be as simple as unify-
ing the name of the property that counts a collection to be the string “count” across all
countable objects, or as complex as taking a string containing some XML data and
being able to treat that string as an object with a set of properties and attributes.

This isn’t the same as subclassing or creating derived types as you would in tradi-
tional object-oriented programming languages. In those languages, if you want to
extend a new type, you can only do it by creating an entirely new type. In dynamic
languages such as PowerShell, you can add members to existing types and objects.
This sounds odd from the point of view of a conventional object-oriented language,
since types and member definitions are so tightly tied together. In languages such as
PowerShell, it’s possible to have objects that don’t really have any type at all.

If you’re a JavaScript user, this won’t be surprising. The object-oriented
mechanisms in JavaScript use a mechanism called “Prototypes”. Prototype-
based systems don’t have types as discrete objects. Instead you use an object
that has the set of members you want to use and use it as the prototype for
your new object. While PowerShell is not strictly a prototype-based lan-
guage, its type extension mechanisms can be used in much the same way.

Since the members we’ll be adding to objects aren’t natively part of the object’s defini-
tion, we call them synthetic members. Synthetic members are used extensively through-
out PowerShell for adaptation and extension. Let’s take a look at an example. First we’ll
examine the synthetic properties on an object returned by dir from the filesystem:

AUTHOR’S
NOTE
BUILDING AND MANIPULATING OBJECTS 223

PS (6) > dir $profile | get-member ps*

 TypeName: System.IO.FileInfo

Name MemberType Definition
---- ---------- ----------
PSChildName NoteProperty System.String PSChildName=Microsof...
PSDrive NoteProperty System.Management.Automation.PSDri...

PSIsContainer NoteProperty System.Boolean PSIsContainer=False
PSParentPath NoteProperty System.String PSParentPath=Microso...
PSPath NoteProperty System.String PSPath=Microsoft.Pow...
PSProvider NoteProperty System.Management.Automation.Provi...

Now let’s get the same information from the registry:

PS (8) > dir hklm:\software | get-member ps*

 TypeName: Microsoft.Win32.RegistryKey

Name MemberType Definition
---- ---------- ----------
PSChildName NoteProperty System.String PSChildName=Adobe
PSDrive NoteProperty System.Management.Automation.PSDri...
PSIsContainer NoteProperty System.Boolean PSIsContainer=True
PSParentPath NoteProperty System.String PSParentPath=Microso...
PSPath NoteProperty System.String PSPath=Microsoft.Pow...
PSProvider NoteProperty System.Management.Automation.Provi...

You can see the same set of PS* properties with the PowerShell (PS) prefix on the
object, even though they are completely different types. Take a look at these proper-
ties. They allow you to work with these two different objects in the same way. This
means that you can always tell if an object might have children by looking at the
PSIsContainer property, regardless of the type of the underlying object. And you
can always get the path to the object through the PSPath property. We call this type
of adaptation object normalization. By adding this set of synthetic properties to all
objects returned from the provider infrastructure, it becomes possible to write scripts
that are independent of the type of object that the provider surfaces. This makes the
scripts both simpler and more reusable.

8.2.3 Using Add-Member to extend objects

The Add-Member cmdlet is the easiest way to add a new member to an object
instance, either an existing object or a synthetic object. It can be used to add any type
of member supported by the PowerShell type system. The list of possible member
types that can be added with Add-Member is shown in table 8.1.

We’ll work through some examples showing how to use these members. We’ll use
an instance of the string “Hi there” to do this. For convenience, we’ll store it in a
variable $s as shown:

PS (1) > $s = "Hi there"
224 CHAPTER 8 SCRIPTBLOCKS AND OBJECTS

Now let’s go over each of the interesting member types.

Adding AliasProperty members

The first type of synthetic member we’ll add is called an alias property. This property
allows you to provide a new name for an existing property. Let’s work with the length
property on a string.

PS (2) > $s.length
8

As we can see, this string has a length of 8. Let’s say that we want to add an alias “size”
for length because we’ll be working with a set of objects that all have a size property.

PS (3) > $s = add-member -passthru -in $s aliasproperty size length

There are a couple things to note in this example. First (and most important) is that
when you first add a synthetic member to an object, you’re really creating a new
object (but not a new type). This new object wraps the original object in an instance
of System.Management.Automation.PSObject. Just as System.Object is
the root of the type system in .NET, PSObject is the root of the synthetic type
system in PowerShell. For this reason, we assign the result of the Add-Member call

Table 8.1 Member types that can be added with Add-Member

Member Type Description

AliasProperty An alias property provides an alternate name for an existing property.
For example, if there is an existing Length property then you might
alias this to Count.

CodeProperty A property that maps to a static method on a .NET class.

Property A native property on the object. In other words, a property that exists
on the underlying object that is surfaced directly to the user. For
example, there might be a native property Length that we choose to
also make available through an extended alias member.

NoteProperty A data-only member on the object (equivalent to a .NET field).

ScriptProperty A property whose value is determined by a piece of PowerShell script.

Properties The collection of properties exposed by this object.

PropertySet A named group of properties.

Method A native method on the underlying object. For example, the Sub-
String() method on the class System.String shows up as a method.

CodeMethod A method that is mapped to a static method on a .NET class.

ScriptMethod A method implemented in PowerShell script.

ParameterizedProperty A property that takes both arguments and a value to assign. This is
typically used for things line indexers and might look like:
 $collection.item(2.3) = "hello"
This sets the element at 2,3 in the collection to the value “hello”.
BUILDING AND MANIPULATING OBJECTS 225

back to the original variable. To do this, we have to add the -passthru parameter to
the command since, by default, the Add-Member cmdlet doesn’t emit anything.

Now let’s look at the new member we’ve added using gm (the alias for Get-Member).

PS (4) > $s | gm size

 TypeName: System.String

Name MemberType Definition
---- ---------- ----------
size AliasProperty size = length

Again, there are a couple things to note. We can see that the size member is there
and is an alias property that maps size to length. Also we need to note that the object’s
type is still System.String. The fact that it’s wrapped in a PSObject is pretty
much invisible from the script user’s view, though you can test for it as shown in the
next example. Using the -is operator, you can test to see whether the object you’re
dealing with is wrapped in a PSObject or not.

PS (5) > $s -is [PSObject]
True
PS (6) > "abc" -is [PSObject]
False
PS (7) > $s -is [string]
True

The result of the first command in the example shows that $s does contain a PSOb-
ject. The second command shows that the raw string doesn’t, and the last line shows
that the object in $s is still considered a string, even though it’s also a PSObject.

The question now is, after all that explanation, did we actually create this aliased
member? The answer is yes:

PS (8) > $s.size
8
PS (9) > $s.length
8

Both the size and length members return the value 8.

Adding NoteProperty members

Now let’s add a note property. A note property is simply a way of attaching a new
piece of data (a note) to an existing object, rather like putting a sticky note on your
monitor. Again we’ll use the same string in $s. Let’s add a note property called
description. In this example, since we know that $s is already wrapped in a
PSObject, we don’t need to use -passthru and do the assignment—we simply add
the property to the existing object.

PS (10) > add-member -in $s noteproperty description "A string"
PS (11) > $s.description
A string
226 CHAPTER 8 SCRIPTBLOCKS AND OBJECTS

We see that we’ve added a “description” property to the object with the value “A
string”. And, to prove that this property isn’t present on all strings, we do

PS (12) > "Hi there".description
PS (13) >

and see that the property returned nothing.
Of course, the note property is a settable property, so we can change it with an

assignment like any other settable property.

PS (14) > $s.description = "A greeting"
PS (15) > $s.description
A greeting

In this example, we changed the value in the note property to “A greeting”. Note
properties allow you to attach arbitrary data to an object. They aren’t type con-
strained, so they can hold any type. Let’s set the description property to a
[datetime] object:

PS (16) > $s.description = get-date
PS (17) > $s.description

Sunday, May 28, 2006 4:24:50 PM

But the value stored in the object is still a [datetime] object, not a string. As such,
we can get the dayofweek property out of the description property.

PS (18) > $s.description.dayofweek
Sunday
PS (19) > $s.description.gettype().fullname
System.DateTime

Adding ScriptMethod members

Both of the synthetic members we’ve added so far have been pure data properties; no
code was involved. Now we’ll look at adding members that execute code. We’ll start
with ScriptMethods, since they’re easiest. Let’s add a method that returns the string
that it’s associated with, reversed. First let’s find an easy way to reverse a string. If we
examine [string], we’ll see that there is (unfortunately) no reverse method on the
string class. There is, however, a static reverse method on [array] that we can use.

PS (1) > [array] | gm -static reverse

 TypeName: System.Array

Name MemberType Definition
---- ---------- ----------
Reverse Method static System.Void Reverse(Array array), s...

This method takes an array and, since it’s void, it must obviously reverse the array in
place. This tells us two things: we need to turn the string into an array (of characters)
BUILDING AND MANIPULATING OBJECTS 227

and then save it in a variable so it can be reversed in place. Converting the string to an
array of characters is simple—we can just use a cast.

PS (19) > $s
Hi there
PS (20) > $a = [char[]] $s

Casting a string into the type [char[]] (array of characters) produces a new object
that is the array of individual characters in the original string; and just to verify this:

PS (21) > $a.gettype().fullname
System.Char[]
PS (22) > "$a"
H i t h e r e

We see that the type of the new object is [char[]] and it does contain the expected
characters. Now let’s reverse it using the [array]::reverse() static method.

PS (23) > [array]::reverse($a)
PS (24) > "$a"
e r e h t i H

When we look at the contents of the array, we see that it has been reversed. But it’s
still an array of characters. The final step is to turn this back into a string. We could
simply cast it or use string interpolation (expansion), but that means that we have to
set $OFS to get rid of the extra spaces this would introduce (see chapter 3 for an
explanation of this). Instead, we’re going to use the static join() method available
on the string class.

PS (25) > $ns = [string]::join("", $a)
PS (26) > $ns
ereht iH
PS (27) > $ns.gettype().fullname
System.String

At this point we have the reversed string in $ns. But the goal of this effort was to
attach this as a method to the string object itself. To do so, we need to construct a
scriptblock to use as the body of the ScriptMethod. This definition looks like:

PS (28) > $sb = {
>> $a = [char[]] $this
>> [array]::reverse($a)
>> [string]::join('',$a)
>> }
>>

This example introduces a new “magic” variable which is only defined for script-
blocks that are used as methods or properties: the $this variable. $this holds the
reference to the object that the scriptmethod member was called from. Now let’s bind
this scriptblock to the object as a scriptmethod using Add-Member:

PS (29) > add-member -in $s scriptmethod Reverse $sb
228 CHAPTER 8 SCRIPTBLOCKS AND OBJECTS

Finally let’s try it out:

PS (30) > $s.reverse()
ereht iH

We get the reversed string as desired.

Adding ScriptProperties members

The next type of member we’ll look at is the ScriptProperty. A ScriptProp-
erty has up to two methods associated with it—a getter and (optionally) a setter,
just like a .NET property. These methods are expressed using two scriptblocks. As was
the case with the ScriptMethod, the referenced object is available in the $this
member. And, in the case of the setter, the value being assigned is available in
$args[0]. Here’s an example. We’re going to add a ScriptProperty member
“desc” to $s that will provide an alternate way to get at the description NoteProp-
erty we added earlier, with one difference. We’re only going to allow values to be
assigned that are already strings. An attempt to assign something that isn’t a string
will result in an error.

Here is the definition of this property:

PS (31) > Add-Member -in $s scriptproperty desc `
>> {$this.description} `
>> {
>> $t = $args[0]
>> if ($t -isnot [string]) {
>> throw "this property only takes strings"
>> }
>> $this.description = $t
>> }
>>

The first scriptblock:

{$this.description}

is the code that will be executed when getting the property’s value. All it does is return
the value stored in the description NoteProperty. Since the setter needs to do some
additional work, its scriptblock is more complex:

{
 $t = $args[0]
 if ($t -isnot [string])
 {
 throw "this property only takes strings"
 }
 $this.description = $t
}

First it saves the value to be assigned into a local variable $t. Next it checks whether this
variable is of the correct type. If not, it throws an exception, failing the assignment.
BUILDING AND MANIPULATING OBJECTS 229

Let’s try out this property. First let’s directly set the note property to the string
“Old description”.

PS (32) > $s.description = "Old description"

Now we’ll use the ScriptProperty getter to retrieve this value.

PS (33) > $s.desc

We see that it’s changed as expected. Next we’ll use the ScriptProperty to change
the description.

PS (34) > $s.desc = "New description"

Verify the change by checking both the NoteProperty directly and the Script-
Property.

PS (35) > $s.description
New description
PS (36) > $s.desc
New description
PS (37) >

Yes, it’s been changed. Now let’s try assigning a [datetime] object to the property
as we did with the description NoteProperty previously.

PS (37) > $s.desc = get-date
Exception setting "desc": "this property only takes strings"
At line:1 char:4
+ $s.d <<<< esc = get-date

The assignment failed. Using ScriptProperty members is a way to do validation
and transformation in properties on objects.

The idea of adding properties to synthetic objects may seem like an aca-
demic exercise, but it turns out to be very useful. In particular, it’s incred-
ibly useful when we need to adapt existing utilities so that they work
effectively in the PowerShell environment. For example, section B.7 shows
how to adapt the output of the task scheduler utility “schtasks.exe” so that
it can work effectively in the PowerShell environment. Another useful sce-
nario for this technique is joining two collections of data properties into a
single object, as illustrated in appendix B.9.

8.2.4 Using the select-object cmdlet

Now that we know all about synthetic members, let’s look at some more ways they are
used. The Select-Object cmdlet, which is used to select a subset of properties on
an object, uses synthetic members to hold these properties.

The Select-Object cmdlet is a way to select elements from a stream of objects.
You can select a range of objects:

AUTHOR’S
NOTE
230 CHAPTER 8 SCRIPTBLOCKS AND OBJECTS

PS (1) > 1..10 | select-object -first 3
1
2
3

Here we’ve selected the first three elements. But much more interesting for this dis-
cussion, it’s a way to select fields from an object.

PS (1) > dir | select-object name,length

Name Length
---- ------
a.txt 98
b.txt 42
c.txt 102
d.txt 66

At first this looks a lot like Format-Table. Let’s use Get-Member to see how differ-
ent it is:

PS (2) > dir | select-object name,length | gm

 TypeName: System.Management.Automation.PSCustomObject

Name MemberType Definition
---- ---------- ----------
Equals Method System.Boolean Equals(Object obj)
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
ToString Method System.String ToString()
Length NoteProperty System.Int64 Length=98
Name NoteProperty System.String Name=a.txt

The first thing we see is that the type of the object is System.Management.Auto-
mation.PSCustomObject, which is not a type we’ve seen before. This is a Power-
Shell-specific type that is used as the base for pure synthetic objects. We already
talked about synthetic members in the previous section. An object whose base is
PSCustomObject only has synthetic members and is therefore a synthetic object.

Even though it’s a synthetic object, it is still a “first-class” citizen in the Power-
Shell environment. We can sort these objects:

PS (3) > dir | select-object name,length | sort length

Name Length
---- ------
b.txt 42
d.txt 66
a.txt 98
c.txt 102
BUILDING AND MANIPULATING OBJECTS 231

or do anything else that we can do with a regular object. But there’s more to this than
simply selecting from the existing set of members. For example, say we want to add a
new field “minute” to these objects. This will be a calculated field as follows:

PS (9) > dir | %{$_.lastwritetime.minute}
55
51
56

54

In other words, it will be the minute at which the file was last written. We attach this
field by passing a specially constructed hashtable describing the member to Select-
Object. This hashtable has to have two members: name and expression (which
can be shortened to “n” and “e” for brevity). The name is the name to call the prop-
erty, and the expression is the scriptblock used to calculate the value of the field. This
definition will look like:

@{n="minute";e={$_.lastwritetime.minute}}

Let’s use it in the pipeline:

PS (11) > dir | select-object name,length,
>> @{n="minute";e={$_.lastwritetime.minute}}
>>

Name Length minute
---- ------ ------
a.txt 98 55
b.txt 42 51
c.txt 102 56
d.txt 66 54

As intended, the result has three fields, including the synthetic “minute” property we
specified with the hashtable. Using Get-Member to see what the object looks like:

PS (12) > dir | select-object name,length,
>> @{n="minute";e={$_.lastwritetime.minute}} | gm
>>

 TypeName: System.Management.Automation.PSCustomObject

Name MemberType Definition
---- ---------- ----------
Equals Method System.Boolean Equals(Object obj)
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
ToString Method System.String ToString()
Length NoteProperty System.Int64 Length=98
minute NoteProperty System.Management.Automation.PSObjec...
Name NoteProperty System.String Name=a.txt

we see that there are now three NoteProperty members on the objects that were
output.
232 CHAPTER 8 SCRIPTBLOCKS AND OBJECTS

Having looked at the “nice” way to add members to objects and build synthetic
objects, let’s dig into the actual plumbing of the PowerShell type system. In the next
section, we’ll look at what’s happening under the covers.

8.3 A CLOSER LOOK AT THE
TYPE-SYSTEM PLUMBING

Earlier in this chapter, we said that the core of the PowerShell type system was the
PSObject type. This type is used to wrap other objects, providing adaptation and
inspection capabilities, as well as a place to attach synthetic members. We’ve used
Get-Member to explore objects and used the Add-Member and Select-Object
cmdlets to extend and create objects. In fact, you can do all of this directly by using
the PSObject class itself. And there’s one thing you can’t do without understanding
PSObject: wrapping or shadowing an existing property. In this technique, the syn-
thetic property calls the base property that it’s hiding. (Don’t worry; this is less eso-
teric than it sounds. A simple example will clarify what we’re talking about here.)

If you’ve done much object-oriented programming, this concept is similar
to creating an override to a virtual method that calls the overridden method
on the base class. The difference here is that it’s all instance-based; there is
no new type involved.

Let’s look at PSObject in more detail. First, let’s look at the properties on this object:

PS (1) > [psobject].getproperties() | %{$_.name}
Members
Properties
Methods
ImmediateBaseObject
BaseObject
TypeNames

From the list, we see some obvious candidates of interest. But how does one get at
these members, given that the whole point of PSObject is to be invisible? The
answer is that there’s a special property attached to all objects in PowerShell called
(surprise) PSObject. Let’s look at this. First we need a test object to work on. We’ll
use get-item to retrieve the DirectoryInfo object for the C: drive.

PS (2) > $f = get-item c:\
PS (3) > $f

 Directory:

Mode LastWriteTime Length Name
---- ------------- ------ ----
d--hs 5/29/2006 3:11 PM C:\

Now let’s look at the PSObject member attached to this object.

AUTHOR’S
NOTE
A CLOSER LOOK AT THE TYPE-SYSTEM PLUMBING 233

PS (4) > $f.psobject

Members : {PSPath, PSParentPath, PSChildName, PSDriv
 e...}
Properties : {PSPath, PSParentPath, PSChildName, PSDriv
 e...}
Methods : {get_Name, get_Parent, CreateSubdirectory,
 Create...}

ImmediateBaseObject : C:\
BaseObject : C:\
TypeNames : {System.IO.DirectoryInfo, System.IO.FileSy
 stemInfo, System.MarshalByRefObject, Syste
 m.Object}

Right away you see a wealth of information: all of the properties we saw on the
PSObject type, populated with all kinds of interesting data. First let’s look at the
TypeNames member:

PS (6) > $f.psobject.typenames
System.IO.DirectoryInfo
System.IO.FileSystemInfo
System.MarshalByRefObject
System.Object

This member contains the names of all of the types in the inheritance hierarchy for a
DirectoryInfo object. (These types are all documented in the .NET class library
documentation that is part of the Microsoft Developers Network [MSDN] collection.
See http://msdn.microsoft.com for more information.)

We'll look at the Properties member next. This is a collection that contains all
of the properties defined by this type. Let’s get information about all of the properties
that contain the pattern “name”:

PS (7) > $f.psobject.properties | ?{$_.name -match "name"}

MemberType : NoteProperty
IsSettable : True
IsGettable : True
Value : C:\
TypeNameOfValue : System.String
Name : PSChildName
IsInstance : True

MemberType : Property
Value : C:\
IsSettable : False
IsGettable : True
TypeNameOfValue : System.String
Name : Name
IsInstance : True
234 CHAPTER 8 SCRIPTBLOCKS AND OBJECTS

MemberType : Property
Value : C:\
IsSettable : False
IsGettable : True
TypeNameOfValue : System.String
Name : FullName
IsInstance : True

This returned information on three properties, one NoteProperty PSPath and
two base object properties, Name and FullName. Of course, we’ve seen these proper-
ties before; this is the same information that would be returned from Get-Member.
In fact, this is exactly what Get-Member does—it uses the PSObject properties to
get this information.

8.3.1 Adding a property

Now let’s add a new member to this object. We could use Add-Member (and typi-
cally we would), but we’re talking about the plumbing here so we’ll do it the hard
way. First we need to create the NoteProperty object that we want to add. We’ll do
this with the New-Object cmdlet.

PS (8) > $np = new-object `
>> system.management.automation.PSnoteProperty `
>> hi,"Hello there"
>>

Next we’ll add it to the member collection

PS (9) > $f.psobject.members.add($np)

and we’re done (so it wasn’t really that hard after all). The hi member has been added
to this object, so let’s try it out:

PS (10) > $f.hi

Hello there

Of course, all of the normal members are still there.

PS (11) > $f.name
C:\

Let’s look at the member in the member collection:

PS (12) > $f.psobject.members | ?{$_.name -match "^hi"}

MemberType : NoteProperty
IsSettable : True
IsGettable : True
Value : Hello there
TypeNameOfValue : System.String
Name : hi
IsInstance : True
A CLOSER LOOK AT THE TYPE-SYSTEM PLUMBING 235

Notice the Value member on the object. Since we can get at the member, we can
also set the member:

PS (13) > ($f.psobject.members | ?{
>> $_.name -match "^hi"}).value = "Goodbye!"
>>
PS (14) > $f.hi
Goodbye!

which is equivalent to setting the property directly on $f:

PS (15) > $f.hi = "Hello again!"
PS (16) > $f.psobject.members | ?{$_.name -match "^hi"}

MemberType : NoteProperty
IsSettable : True
IsGettable : True
Value : Hello again!
TypeNameOfValue : System.String
Name : hi
IsInstance : True

Now the Value member on the note property is “Hello again!”.

8.3.2 Shadowing an existing property

There’s one last item we want to cover in our discussion of the plumbing: the mecha-
nism that allows you to bypass the adapted members and lets you get at the raw
object underneath. This is accomplished through another special member on PSOb-
ject called PSBase. This member allows you to get at the object directly, bypassing
all of the synthetic member lookup. It also makes it possible to create a synthetic
member to adapt an existing member. We can clarify this with an example. Say I
want to change the “Name” property on a DirectoryInfo object to always return
the name in uppercase. Here’s what it looks like unadapted:

PS (18) > $f = get-item c:\windows
PS (19) > $f.name
windows

To do this I’ll create a new PSProperty object called Name that will “shadow” the
existing property.

PS (20) > $n=new-object Management.Automation.PSScriptProperty `
>> name,{$this.psbase.name.ToUpper()}
>>

In the body of the scriptblock for this PSProperty, we’ll use $this.psbase to get
at the name property on the base object (if we just accessed the name property
directly, we’d be calling ourselves). We apply the ToUpper() method on the string
returned by name to acquire the desired result. Now add the member to the object’s
Members collection
236 CHAPTER 8 SCRIPTBLOCKS AND OBJECTS

PS (21) > $f.psobject.members.add($n)

and try it out.

PS (22) > $f.name
WINDOWS

When we access the name property on this object, the synthetic member we created
gets called instead of the base member, so the name is returned in uppercase. The
base object’s name property is, of course, unchanged and can be retrieved through
psbase.name:

PS (23) > $f.psbase.name
windows
PS (24) >

While this isn’t a technique that you’ll typically use on a regular basis, it allows you to
do some pretty sophisticated work. You could use it to add validation logic, for exam-
ple, and prevent a property from being set to an undesired value. You could also use it
to log accesses to a property to gather information about how your script or applica-
tion is being used.

With a solid understanding of the plumbing, let’s take the pieces and look at how
they can be used to extend the PowerShell language.

8.4 EXTENDING THE POWERSHELL LANGUAGE

In the previous section, we learned how to add members to existing objects one at a
time, but sometimes you’ll want to construct new types rather than extend the exist-
ing types. In this section, we’ll cover how to do that and also how to use scripting
techniques to “add” the ability to create objects to the PowerShell language.

8.4.1 Little languages

The idea of “little languages”, i.e., small domain-specific languages, has been around
for a long time. This was one of the powerful ideas that made the UNIX environment
so attractive. Many of the tools that were the roots for today’s dynamic languages
came from this environment.

Of course, in effect, all programs are essentially an exercise in building their own
languages. You create the nouns (objects) and verbs (methods or functions) in this
language. These patterns are true for all languages that support data abstraction.
Dynamic languages go further because they allow you to extend how the nouns,
verbs, and modifiers are composed in the language. For example, in a language such
as C#, it would be difficult to add a new looping construct. In PowerShell, this is
minor. To illustrate how easy it is, let’s define a new looping keyword called loop.
This construct will repeat the body of the loop for the number of times the first
argument specifies. We can add this keyword by defining a function that takes a
number and scriptblock. Here’s the definition:
EXTENDING THE POWERSHELL LANGUAGE 237

PS (1) > function loop ([int] $i, [scriptblock] $b) {
>> while ($i-- -gt 0) { . $b }
>> }
>>

Here we try it out:

PS (2) > loop 3 { "Hello world" }
Hello world
Hello world
Hello world
PS (3) >

In a few lines of code, we’ve added a new flow control statement to the PowerShell
language that looks pretty much like any of the existing flow control statements.

We can apply this technique to creating language elements that allow you to
define your own custom types. Let’s add some “class” to PowerShell!

8.4.2 Adding a CustomClass keyword to PowerShell

We shall use the technique from the previous section to extend the PowerShell lan-
guage to allow us to define our own custom classes. First we’ll gather our require-
ments. We want the syntax for defining a class to look fairly natural (at least for
PowerShell). Here’s what we want a class definition to look like:

CustomClass point {
 note x 0
 note y 0
 method ToString { "($($this.x), $($this.y))"}
 method scale {
 $this.x *= $args[0]
 $this.y *= $args[0]
 }
}

Once we’ve defined this custom class, we want to be able to use it as follows. First we
can create a new instance of the point class:

$p = new point

then set the x and y members on this class to particular values:

$p.x=2
$p.y=3

and finally call the ToString() method to display the class.

$p.tostring()

This would give us a natural way to define a class in PowerShell. Now let’s look at
how to implement these requirements.

We’ll put the code for this script in a file called class.ps1. Let’s go over the
contents of that script a piece at a time.
238 CHAPTER 8 SCRIPTBLOCKS AND OBJECTS

First we need a place to store the types we’re defining. We need to use a global
variable for this, since we want it to persist for the duration of the session. We’ll give
it a name that is unlikely to collide with other variables (we’ll put two underscores at
each end to help ensure this) and initialize it to an empty hashtable.

$global:__ClassTable__ = @{}

Next, we define the function needed to create an instance of one of the classes we’ll
create. This function will take only one argument: the scriptblock that creates an
instance of this class. This function will invoke the scriptblock provided to it. This
scriptblock is expected to return a collection of synthetic member objects. The func-
tion will then take these members and attach them to the object being created. This is
a helper function that also has to be global, so again we’ll give it a name that is
unlikely to collide with other global functions.

function global:__new_instance ([scriptblock] $definition)
{

At this point we define some local functions to use in the body of the
__new_instance function. First we’ll define a helper method for generating error
messages.

 function elementSyntax ($msg)
 {
 throw "class element syntax: $msg"
 }

In the example, we had “keywords” for each of the member types we could add. We’ll
implement this by defining functions that implement these keywords. Because of the
way dynamic scoping works (see chapter 7), these functions will be visible to the script-
block when it’s invoked, because they’re defined in the enclosing dynamic scope.

First, let’s define the function for creating a note element in the class. This
implements the note keyword in the class definition. It takes the name of the note
and the value to assign to it and returns a PSNoteProperty object to the caller.

 function note ([string]$name, $value)
 {
 if (! $name) {
 elementSyntax "note name <value>"
 }
 new-object management.automation.PSNoteProperty `
 $name,$value
 }

Next, define the function that implements the method keyword. This function takes
the method name and scriptblock that will be the body of the method and returns a
PSScriptMethod object.
EXTENDING THE POWERSHELL LANGUAGE 239

 function method ([string]$name, [scriptblock] $script)
 {
 if (! $name) {
 elementSyntax "method name <value>"
 }
 new-object management.automation.PSScriptMethod `
 $name,$script
 }

We could continue to define keyword functions for all of the other member types,
but to keep it simple, we’ll stick with just these two.

Having defined our keyword functions, we can look at the code that actually
builds the object. First we need to create an empty PSObject with no methods or
properties.

 $object = new-object Management.Automation.PSObject

Next, execute the scriptblock that defines the body of this class. As mentioned previ-
ously, the result of that execution will be the set of members to attach to the new
object we’re creating.

 $members = &$definition

Finally, attach the members to the object:

 foreach ($member in $properties) {
 if (! $member) {
 write-error "bad member $member"
 } else {
 $object.psobject.members.Add($member)
 }

 }

The last thing to do is return the constructed object.

 $object
}

As mentioned, the __new_instance function was a worker function; the user never
calls it directly. Now we’ll define the function that the user employs to define a new
class. Again, this has to be a global function; but this time, since the user calls it, we’ll
give it a conventional name.

function global:CustomClass
{

This function takes the name of the class and the scriptblock to execute to produce
the members that will be attached to that class.

 param ([string] $type, [scriptblock] $definition)

If there is already a class defined by the name that the user passed, throw an error.
240 CHAPTER 8 SCRIPTBLOCKS AND OBJECTS

 if ($global:__ClassTable__[$type]) {
 throw "type $type is already defined"
 }

At this point, we’ll execute the scriptblock to build an instance of the type that will be
discarded. We do this to catch any errors in the definition at the time the class is
defined, instead of the first time the class is used. It’s not strictly necessary to do this,
but it will help you catch any errors sooner rather than later.

 __new_instance $definition > $null

Finally, add the class to the hashtable of class definitions:

 $global:__ClassTable__[$type] = $definition
}

and we’re finished implementing the class keyword. Next we have to define the
new keyword. This turns out to be a simple function. The new keyword takes the
name of the class you want to create an instance of, looks up the scriptblock to exe-
cute, and calls __new_instance to build the object.

function global:new ([string] $type)
{
 $definition = $__ClassTable__[$type]
 if (! $definition) {
 throw "$type is undefined"
 }
 __new_instance $definition

}

Finally, we’ll add one last helper function that will allow us to remove a class defini-
tion from the hashtable.

function remove-class ([string] $type)
{
 $__ClassTable__.remove($type)
}

This then is the end of the class.ps1 script.
We should try it out with the point example we looked at at the beginning of this

section. First we have to run the script containing the code to set up all of the defini-
tions. (Since we explicitly defined things to be global in the script, there’s no need to
“dot” this script.)

PS (1) > ./class

Now define the point class

PS (2) > CustomClass point {
>> note x 0
>> note y 0
>> method ToString { "($($this.x), $($this.y))"}
EXTENDING THE POWERSHELL LANGUAGE 241

>> method scale {
>> $this.x *= $args[0]
>> $this.y *= $args[0]
>> }
>> }
>>

Next create an instance of this class:

PS (3) > $p = new point

Use Get-Member to look at the members on the object that was created:

PS (4) > $p | gm

 TypeName: System.Management.Automation.PSCustomObject

Name MemberType Definition
---- ---------- ----------
Equals Method System.Boolean Equals(Object obj)
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
x NoteProperty System.Int32 x=0
y NoteProperty System.Int32 y=0
scale ScriptMethod System.Object scale();
ToString ScriptMethod System.Object ToString();

We see the actual type of the object is PSCustomType—the type that PowerShell
uses for pure synthetic objects. You can also see the members we defined in the class
definition: the two NoteProperties x and y and the two methods scale() and
ToString(). To try them out, we’ll first call ToString():

PS (5) > $p.tostring()
(0, 0)

We see the default values for the note members, formatted as intended. Next, set the
note members to new values:

PS (6) > $p.x=2
PS (7) > $p.y=3

Verify that they’ve been set:

PS (8) > $p.tostring()
(2, 3)

Now call the scale() method to multiply each note member by a scale value.

PS (9) > $p.scale(3)

And again, verify the values of the note members with ToString().

PS (10) > $p.tostring()
(6, 9)
242 CHAPTER 8 SCRIPTBLOCKS AND OBJECTS

The values have been scaled.
Finally, to see how well this all works, let’s use this object with the format opera-

tor and we see that our ToString() method is properly called.

PS (11) > "The point p is {0}" -f $p
The point p is (6, 9)

So, in less than a hundred lines of PowerShell script, we’ve added a new “keyword”
that lets you define you own classes in PowerShell. Obviously, this isn’t a full-featured
type definition system; it doesn’t have any form of inheritance, for example. But it
does illustrate how you can use scriptblocks along with dynamic scoping to build new
language features in PowerShell in a sophisticated way.

Now let’s change gears a bit to talk about types.

8.5 TYPE EXTENSION

You might have noticed that all of the examples we’ve shown so far involve adding
members to instances. But what about adding members to types? Having to explicitly
add members to every object we encounter would be pretty tedious, no matter how
clever we were. We really need some way to extend types. Of course, PowerShell also
let’s you do this. In this section, we’ll introduce the mechanisms that PowerShell pro-
vides which let you extend types.

Type extension is performed in PowerShell through a set of XML configuration
files. These files are usually loaded at startup time; however, they can be extended
after the shell has started. In this section, we’ll show you how you can take advantage
of these features.

Let’s look at an example. Consider an array of numbers. It’s fairly common to
sum up a collection of numbers; unfortunately, there’s no Sum() method on the
Array class.

PS (1) > (1,2,3,4).sum()
Method invocation failed because [System.Object[]] doesn't conta
in a method named 'sum'.
At line:1 char:14
+ (1,2,3,4).sum(<<<<)

Using the techniques we’ve discussed previously, we could add such a method to this
array:

PS (3) > $a = add-member -pass -in $a scriptmethod sum {
>> $r=0
>> foreach ($e in $this) {$r += $e}
>> $r
>> }
>>

and finally use it:

PS (4) > $a.sum()
10
TYPE EXTENSION 243

But this would be painful to do for every instance of an array. What we really need is
a way to attach new members to a type, rather than through an instance. PowerShell
does this through type configuration files. These configuration files are stored in the
installation directory for PowerShell and loaded at startup. The installation directory
path for PowerShell is stored in the $PSHome variable, so it’s easy to find these files.
They have the word “type” in their names and have an extension .ps1xml:

PS (5) > dir $pshome/*type*.ps1xml

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Program
 Files\Windows PowerShell\v1.0

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 4/19/2006 4:12 PM 50998 DotNetTypes.Format.
 ps1xml
-a--- 4/19/2006 4:12 PM 117064 types.ps1xml

We don’t want to update the default installed types files because when we install
updates for PowerShell, they will likely be overwritten and our changes will be lost.
What we want to do here is create our own custom types file containing the specifica-
tion of the new member for System.Array. Once we’ve created the file, we can use
the Update-TypeData cmdlet to load it.

Here’s the definition for the Sum() method extension we want to add to Sys-
tem.Array.

<Types>
 <Type>
 <Name>System.Array</Name>
 <Members>
 <ScriptMethod>
 <Name>Sum</Name>
 <Script>
 $r=$null
 foreach ($e in $this) {$r += $e}
 $r
 </Script>
 </ScriptMethod>
 </Members>
 </Type>
</Types>

This definition is saved to a file called SumMethod.ps1xml. Now let’s load the file
and update the type system definitions:

PS (9) > update-typedata SumMethod.ps1xml

If the file loaded successfully, you won’t see any output. We can now try out the
sum() function:
244 CHAPTER 8 SCRIPTBLOCKS AND OBJECTS

PS (10) > (1,2,3,4,5).sum()
15

It worked. And, because of the way the script was written, it will work on any type
that can be added. So let’s add some strings:

PS (11) > ("abc","def","ghi").sum()
abcdefghi

You can even use it to add hashtables:

PS (12) > (@{a=1},@{b=2},@{c=3}).sum()

Name Value
---- -----
a 1
b 2
c 3

We can see that the result is the composition of all three of the original hashtables.
We can even use it to put a string back together. Here’s the “hal” to “ibm” example
from chapter 3, this time using the Sum() method:

PS (13) > ([char[]] "hal" | %{[char]([int]$_+1)}).sum()
ibm

Here we break the original string into an array of characters, add 1 to each character,
and then use the Sum() method to add them all back into a string.

You should take some time to examine the set of type configuration files that are
part of the default PowerShell installation. Examining these files is a good way to see
what that can be accomplished using these tools. In the meantime, let’s move on to
the final section in this chapter—building code at runtime.

8.6 BUILDING CODE AT RUNTIME

Scriptblocks can be passed around, invoked, and assigned at runtime, but the body of
these blocks is still defined at compile time. This final section covers how PowerShell
provides for compiling scriptblocks and executing code at runtime. Compiling may
seem like a funny word, but that’s essentially what creating a scriptblock is: a piece of
script is compiled into an executable object. In addition, PowerShell provides a mech-
anism for directly executing a string without first building a scriptblock. This is done
with the Invoke-Expression cmdlet—the first thing we’ll talk about.

8.6.1 The Invoke-Expression cmdlet

The Invoke-Expression cmdet is a way to execute an arbitrary string as a piece of
code. It takes the string, compiles it, and then immediately executes it in the current
scope. Here’s an example:

PS (1) > invoke-expression '$a=2+2; $a'
4

BUILDING CODE AT RUNTIME 245

In this example, the script passed to the cmdlet assigned the result of 2+2 to $a, and
wrote $a to the output stream. Since this expression was evaluated in the current con-
text, it should also have affected the value of $a in the global scope.

PS (2) > $a
4

We see that it did. Let’s invoke another expression.

PS (3) > invoke-expression '$a++'
PS (4) > $a
5

Evaluating this expression changes the value of $a to 5.
There are no real limits on what you can evaluate with Invoke-Expression. It

can take any arbitrary piece of script code. Here’s an example where we build up a
string with several statements in it and execute it:

PS (5) > $expr = '$a=10;'
PS (6) > $expr += 'while ($a--) { $a }'
PS (7) > $expr += '"A is now $a"'
PS (8) > [string](invoke-expression $expr)
9 8 7 6 5 4 3 2 1 0 A is now -1

The first three commands in this example build up a string to execute. The first line
initializes the variable $a, the second adds a while loop that decrements and outputs
$a, and the final line outputs a string telling us the final value of $a. Note the double
quoting in the last script fragment. Without the nested double quotes, it would try to
execute the first word in the string instead of emitting the whole string.

8.6.2 The ExecutionContext variable

One of the predefined variables (also called automatic variables) provided by the Pow-
erShell engine is $ExecutionContext. This variable is another way to get at vari-
ous facilities provided by the PowerShell engine. It’s intended to mimic the interfaces
available to the cmdlet author. The services that matter most to us in this chapter are
those provided through the InvokeCommand member. Let’s look at the methods this
member surfaces:

PS (1) > $ExecutionContext.InvokeCommand | gm

 TypeName: System.Management.Automation.CommandInvocationIntri
nsics

Name MemberType Definition
---- ---------- ----------
Equals Method System.Boolean Equals(Object obj)
ExpandString Method System.String ExpandString(String s...
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
246 CHAPTER 8 SCRIPTBLOCKS AND OBJECTS

InvokeScript Method System.Collections.ObjectModel.Coll...
NewScriptBlock Method System.Management.Automation.Script...
ToString Method System.String ToString()

The interesting methods in this list are ExpandString(), InvokeScript(), and
NewScriptBlock(). These methods are covered in the next few sections.

The ExpandString() method

The ExpandString() method lets you perform the same kind of variable interpola-
tion that the PowerShell runtime does in scripts. Here’s an example. First we set $a to
a known quantity:

PS (2) > $a = 13

Next we create a variable $str that will display the value of $a.

PS (3) > $str='a is $a'

Since the variable was assigned using single-quotes, no string expansion took place.
We verify this by displaying the string:

PS (4) > $str
a is $a

Now call the ExpandString() method, passing in $str:

PS (5) > $ExecutionContext.InvokeCommand.ExpandString($str)
a is 13

and it returns the string with the variable expanded into its value.

The InvokeScript() method

The next method to look at is InvokeScript(). This method does the same thing
that the Invoke-Expression cmdlet does. It takes its argument and evaluates it
like a script. Call this method passing in the string “2+2”

PS (7) > $ExecutionContext.InvokeCommand.InvokeScript("2+2")
4

and it will return 4.

The NewScriptBlock() method

The final method to look at is the NewScriptBlock() method. Like Invoke-
Script(), this method takes a string, but instead of executing it, it returns a script-
block object that represents the compiled script. Let’s use this method to turn the
string '1..4 | foreach {$_ * 2}' into a scriptblock.

PS (8) > $sb = $ExecutionContext.InvokeCommand.NewScriptBlock(
>> '1..4 | foreach {$_ * 2}')
>>
BUILDING CODE AT RUNTIME 247

We saved this scriptblock into a variable, so let’s look at it. Since the ToString() on
a scriptblock is the code of the scriptblock, we just see the code that makes up the
body of the scriptblock.

PS (9) > $sb
1..4 | foreach {$_ * 2}

Now let’s execute the scriptblock using the "&" call operator.

PS (10) > & $sb
2
4
6
8

The scriptblock executed, printing out the even numbers from 4 to 8.

Many people have asked why we (the PowerShell team) don’t allow you to
simply cast a string to a scriptblock. The reason is that we want to make the
system resilient against code injection attacks. We want to minimize the
number of places where executable code can be injected into the system,
and we particularly want code creation to be an explicit act. Casts are more
easily hidden, leading to accidental code injections, especially when the sys-
tem may prompt for a string. We don’t want those user-provided strings to
be converted into code without some kind of check. See chapter 13 for
more extensive discussions about security.

8.6.3 Creating functions using the function: drive

The final way to create a scriptblock is actually a side-effect of creating elements in
the function drive. Earlier we saw that you can create a named function by assigning
a scriptbock to a name in the function drive:

PS (1) > $function:foo = {"Hello there"}
PS (2) > foo
Hello there

You could also use the New-Item cmdlet to do this:

PS (3) > new-item function:foo -value {"Hi!"}
New-Item : The item at path 'foo' already exists.
At line:1 char:9
+ new-item <<<< function:foo -value {"Hi!"}

We received an error because the function already exists, so let’s use the -force
parameter to overwrite the existing definition:

PS (4) > new-item function:foo -value {"Hi!"} -force

CommandType Name Definition
----------- ---- ----------
Function foo "Hi!"

AUTHOR’S
NOTE
248 CHAPTER 8 SCRIPTBLOCKS AND OBJECTS

New-Item returns the item created, so we can see that the function has been
changed. But that’s using scriptblocks. What happens if we pass in strings? The inter-
preter will compile these strings into scriptblocks and then assign the scriptblock to
the name. Here’s an example where the body of the function is determined by the
expanded string.

PS (5) > $x=5
PS (6) > $y=6
PS (7) > $function:foo = "$x*$y"
PS (8) > foo
30
PS (9) > $function:foo
5*6

The variables $x and $y expanded into the numbers 5 and 6 in the string, so the
resulting scriptblock was

 {5*6}

Now let’s define another function using foo, but adding some more text to the
function.

PS (10) > new-item function:bar -value "$function:foo*3"

CommandType Name Definition
----------- ---- ----------
Function bar 5*6*3

PS (11) > bar
90

In the expanded string, $function:foo expanded into “5*6” so the new function
bar was assigned a scriptblock

 {5*6*3}

This concludes our survey of ways to build new code at runtime in PowerShell. There
are even more ways to build code using .NET’s Reflection.Emit classes. We’ll
cover those techniques in chapter 11. For now, though, we’ve covered everything
about metaprogramming in PowerShell.

8.7 SUMMARY

In chapter 8, we covered advanced topics in programming and metaprogramming
with PowerShell. Although many of the techniques covered in the chapter are quite
advanced, used appropriately they can significantly improve your productivity as a
scripter. We’ll also see in later chapters how language elements such as scriptblocks
make graphical programming in PowerShell easy and elegant. In this chapter you
learned to:
SUMMARY 249

• To use powerful metaprogramming techniques to essentially “crack open” the
PowerShell runtime. This allows you to extend the runtime with new keywords
and control structures. You can directly add properties and methods to objects
in PowerShell; this is useful because you can adapt or extend objects logically in
specific problem domains.

• Units of PowerShell code, including the content of scripts and functions and the
code you type in a PowerShell session, are actually scriptblocks. Properties and
methods are added to objects as script property/method blocks. Scriptblocks
don’t necessarily need to be named, and can be used in many situations, including
as the content of variables. But in all cases, they have the same set of features.

• While scriptblocks are the key to all of the metaprogramming features in Power-
Shell, they’re also an “everyday” feature that users work with all the time when
they use the Foreach-Object and Where-Object cmdlets.

• To use the call operator & to invoke commands indirectly; that is, by reference
rather than by name (since a scriptblock is just a reference). This also works
with the CommandInfo objects returned from Get-Command.

• To use scriptblocks along with the PSObject and PSCustomObject classes to
build new objects and extend existing object instances.

• When using the Update-TypeData cmdlet, you can load type configuration
files which allow you to extend a type instead of a single instance of that type.

• To use the “little language” technique to extend the PowerShell language to add
new language elements such as keywords and control structures.

• To employ a variety of techniques for compiling and executing code at runtime.
You can use the Invoke-Expression cmdlet or engine invocation intrinsics
on the $ExecutionContext variable.
250 CHAPTER 8 SCRIPTBLOCKS AND OBJECTS

C H A P T E R 9

Errors, exceptions,
and script debugging

9.1 Error handling 252
9.2 Dealing with errors that terminate

execution 265
9.3 Script debugging 270

9.4 Nested prompts and
breakpoints 277

9.5 Low-level tracing 283
9.6 The PowerShell event log 291
9.7 Summary 293
Progress, far from consisting in change, depends on retentiveness.
Those who cannot remember the past are condemned to repeat it.

 —George Santayana, The Life of Reason

Big Julie: I had the numbers taken off for luck, but I remember where
the spots formerly were.

 —Guys and Dolls, words and music by Frank Loesser

It’s important to keep in mind that PowerShell is not “just” a shell or scripting lan-
guage. Its primary purpose is to be an automation tool for managing Microsoft Win-
dows. And when you’re depending on a script to perform some critical management
task on a server, such as to send software updates, inspect log files for intrusion
251

attempts, or provision user accounts, you want to be sure that either the task is com-
pleted properly or the reason for failure is appropriately recorded.

In this chapter, we’re going to focus on the latter topic: how PowerShell reports,
records, and manages error conditions. This is one of the areas that really makes Pow-
erShell stand out from other scripting tools. The support for diagnostic tracing and
logging is practically unprecedented in traditional scripting languages. Unfortu-
nately, these features don’t come entirely free—there are costs in terms of complexity
and execution overhead that just aren’t there in other languages. All these capabilities
are very much a part of PowerShell as a management tool; we’ve set a higher bar for
PowerShell than has been set for most other language environments.

We’ll begin with the error objects themselves. Errors in PowerShell are not simply
error codes, strings, or even exceptions as found in languages such as C# and VB.Net.
They are rich objects that include just about everything we could think of that might
be useful in debugging a problem.

Some people dislike (okay, despise) the use of the word “rich” in this con-
text. However, given the wealth of information that PowerShell error ob-
jects contain, rich really is the right word. So I’m going to use it several
more times. So there.

In this chapter, we’re going to examine these ErrorRecord objects in detail, along
with how they’re used by the various PowerShell mechanisms to manage error condi-
tions. We’re also going to look at the other mechanisms that are available for solving
script execution problems, including tracing and script debugging. Even though this
is a long chapter with a good deal of information, it can’t cover everything. The main
goal is to cover in detail the features that are most likely to affect the day-to-day user
and make you aware of the other resources that exist.

9.1 ERROR HANDLING

Error handling in PowerShell is very structured. As we said previously, errors are not
simply bits of text written to the screen. PowerShell errors are rich objects that con-
tain a wealth of information about where the error occurred and why. There is one
aspect to error handling in PowerShell that is unique: the notion of terminating and
non-terminating errors. This aspect is a consequence of the streaming model Power-
Shell uses in processing objects. Here’s a simple example that will help you under-
stand this concept. Think about how removing a list of files from your system should
work. You stream this list of files to the cmdlet that will delete the files. Imagine that
you can’t delete all the files on the list for various reasons. Do you want the command
to stop processing as soon as it hits the first element in the list? The answer is proba-
bly “No.” You’d like the cmdlet to do as much work as it can, but capture any errors
so that you can look at them later. This is the concept of a non-terminating error—the
error is recorded and the operation continues. On the other hand, there are times
when you do want an operation to stop on the first error. These are called terminating

AUTHOR’S
NOTE
252 CHAPTER 9 ERRORS, EXCEPTIONS, AND SCRIPT DEBUGGING

errors. Of course, sometimes you want an error to be terminating in one situation and
non-terminating in another. PowerShell provides mechanisms to allow you to do this.

Since the architecture supports multiple non-terminating errors being generated
by a pipeline, it can’t just throw or return an error. This is where streaming comes
into play; non-terminating errors are simply written to the error stream. By default,
these errors are displayed, but there are a number of other ways of working with
them. In the next few sections, we’ll look at those mechanisms. But first we need to
take at look at the error records themselves.

9.1.1 ErrorRecords and the error stream

As we delve into the topic of error handling, we’ll first take a look at capturing error
records in a file using redirection, and then learn how to capture error messages in a
variable. Let’s start with getting hold of an error record. Error records are written to
the output stream, which by default is simply displayed.

PS (1) > dir nosuchfile
Get-ChildItem : Cannot find path 'C:\files\nosuchfile' because i
t does not exist.
At line:1 char:4
+ dir <<<< nosuchfile

Using the redirection operators we talked about in chapter 5, we can change this. We
could redirect the error messages to a file:

PS (2) > dir nosuchfile 2> err.txt

but this has the downside that the error message is rendered to displayable text before
writing it to the file. When that happens, we lose all that extra richness in the objects.
Take a look at what was saved to the file.

PS (3) > Get-Content err.txt
Get-ChildItem : Cannot find path 'C:\files\nosuchfile' because i
t does not exist.
At line:1 char:4
+ dir <<<< nosuchfile 2> err.txt

The error text is there as it would have been displayed on the console, but we’ve lost
all of the elements of the object that haven’t been displayed. And this lost information
may be critical to diagnosing the problem. We need a better way to capture this infor-
mation. The first mechanism we’ll look at is capturing the error record by using the
stream merge operator 2>&1, and then assigning the result to a variable.

PS (4) > $err = dir nosuchfile 2>&1

Now use Get-Member to display the properties on the object. We’ll use the -type
parameter on Get-Member to filter the display and only show the properties. (In
order to be concise, we’ll use the gm alias instead of the full cmdlet name.)
ERROR HANDLING 253

PS (5) > $err | gm -type property

 TypeName: System.Management.Automation.ErrorRecord

Name MemberType Definition
---- ---------- ----------
CategoryInfo Property System.Management.Automation...
ErrorDetails Property System.Management.Automation...

Exception Property System.Exception Exception {...
FullyQualifiedErrorId Property System.String FullyQualified...
InvocationInfo Property System.Management.Automation...
TargetObject Property System.Object TargetObject {...

Although this shows you all of the properties and their definitions, some of the prop-
erty names are a little tricky to figure out, so further explanation is in order. Table 9.1
lists all of the properties, their types, and a description of what the property is.

Let’s look at the content of the properties for this error:

PS (10) > $err | fl * -force

Exception : System.Management.Automation.ItemNotFoun
 dException: Cannot find path 'C:\files\n
 osuchfile' because it does not exist.
 at System.Management.Automation.Sessi
 onStateInternal.GetChildItems(String pat

Table 9.1 ErrorRecord properties and their descriptions

Name Type Description

CategoryInfo ErrorCategoryInfo This string breaks errors into a number of
broad categories.

ErrorDetails ErrorDetails This may be null. If present, ErrorDetails
can specify additional information, most
importantly ErrorDetails.Message, which
(if present) is a more exact description and
should be displayed instead of Excep-
tion.Message.

Exception System.Exception This is the underlying .NET exception cor-
responding to the error that occurred.

FullyQualifiedErrorId System.String This identifies the error condition more
specifically than either the ErrorCategory
or the Exception. Use FullyQualifiedErrorId
to filter highly specific error conditions.

InvocationInfo System.Management.Auto-
mation.InvocationInfo

This is an object that contains information
about where the error occurred—typically
the script name and line number.

TargetObject System.Object This is the object that was being operated
on when the error occurred. It may be null,
as not all errors will set this field.
254 CHAPTER 9 ERRORS, EXCEPTIONS, AND SCRIPT DEBUGGING

 h, Boolean recurse, CmdletProviderContex
 t context)
 at System.Management.Automation.Child
 ItemCmdletProviderIntrinsics.Get(String
 path, Boolean recurse, CmdletProviderCon
 text context)
 at Microsoft.PowerShell.Commands.GetC
 hildItemCommand.ProcessRecord()

TargetObject : C:\files\nosuchfile
CategoryInfo : ObjectNotFound: (C:\files\nosuchfile:Str
 ing) [Get-ChildItem], ItemNotFoundExcept
 ion
FullyQualifiedErrorId : PathNotFound,Microsoft.PowerShell.Comman
 ds.GetChildItemCommand
ErrorDetails :
InvocationInfo : System.Management.Automation.InvocationI
 Nfo

In this output, you can see the exception that caused the error was ItemNotFound-
Exception. The TargetObject member contains the full path the cmdlet used to
locate the item. This overall error is placed in the broader category of ObjectNot-
Found. There are no additional error details for this object.

Let’s take a closer look at the InvocationInfo member. This member provides
information about where the error occurred. Here’s what it looks like:

PS (6) > $err.InvocationInfo

MyCommand : Get-ChildItem
ScriptLineNumber : 1
OffsetInLine : 11
ScriptName :
Line : $err = dir nosuchfile 2>&1
PositionMessage :
 At line:1 char:11
 + $err = dir <<<< nosuchfile 2>&1
InvocationName : dir
PipelineLength : 1
PipelinePosition : 1

Since we entered this command on the command line, the script name is empty and
the script line is 1. The offset is the offset in the script line where the error occurred.
There is also other information available, such as the number of commands in the
pipeline that caused an error, as well as the index of this command in the pipeline.
This message also includes the line of script text where the error occurred. Finally,
there is the PositionMessage member. This member takes all of the other infor-
mation and formats it into what you see in PowerShell errors.

Clearly, there is a lot of information in these objects that can help you figure out
where and why an error occurred. The trick is to make sure that we have the right
error objects available at the right time. It simply isn’t possible to record every error
that occurs as it would take up too much space and be impossible to manage. If we
ERROR HANDLING 255

limit the set of error objects that are preserved, we want to make sure that we keep
those we care about. Obviously, having the wrong error objects doesn’t help. Some-
times we’re interested only in certain types of errors or only in errors from specific
parts of a script. To address these requirements, PowerShell provides a rich set of
tools for capturing and managing errors. The next few sections cover these tools and
the techniques for using them.

9.1.2 The $error variable and –ErrorVariable parameter

The point of rich error objects is that you can examine them after the error has
occurred and possibly take remedial action. Of course, to do this, you have to capture
them first. In the previous section, we looked at how we can do this by redirecting the
error stream, but the problem with doing so is that you have to think of it before-
hand. Since you don’t know when errors occur, in practice you’d have to do it all the
time. Fortunately, PowerShell performs some of this work for you. There is a special
variable $error that contains a collection of the errors that occurred. This is main-
tained as a circular bounded buffer. As new errors occur, old ones are discarded. The
number of errors that are retained is controlled by the $MaximumErrorCount vari-
able. The collection in $error is an array (technically an instance of System.Col-
lections.ArrayList) that buffers errors as they occur. The most recent error is
always stored in $error[0].

While it’s tempting to think that you could just set $MaximumError-
Count to some very large value and never have to worry about capturing
errors, in practice this is not a good idea. Rich error objects also imply fairly
large error objects. If you set $MaximumErrorCount to too large a value,
you won’t have any memory left. In practice, there usually is no reason to
set it to anything larger than the default, though you may want to set it to
something smaller if you want to make more space available for other things.

Let’s explore using the $error variable. We’ll start with the same error as before.

PS (1) > dir nosuchfile
Get-ChildItem : Cannot find path 'C:\working\book\nosuchfile' be
cause it does not exist.
At line:1 char:4
+ dir <<<< nosuchfile

We didn’t explicitly capture it, but it is available in $error[0]

PS (2) > $error[0]
Get-ChildItem : Cannot find path 'C:\working\book\nosuchfile' be
cause it does not exist.
At line:1 char:4
+ dir <<<< nosuchfile

with all of the error properties. For example, here is the exception object:

PS (3) > $error[0].exception
Cannot find path 'C:\working\book\nosuchfile' because it does no
t exist.

AUTHOR’S
NOTE
256 CHAPTER 9 ERRORS, EXCEPTIONS, AND SCRIPT DEBUGGING

and here’s the target object that caused the error:

PS (4) > $error[0].targetobject
C:\working\book\nosuchfile

Now let’s do something that will cause a second error.

PS (5) > 1/$null
Attempted to divide by zero.
At line:1 char:3
+ 1/$ <<<< null

Here we have a division by zero error.

The example here uses 1/$null. The reason for doing this instead of sim-
ply 1/0 is because the PowerShell interpreter does something called con-
stant expression folding. It looks at expressions that contain only constant
values. When it sees one, it evaluates that expression once at compile time
so it doesn’t have to waste time doing it again at runtime. This means that
impossible expressions, such as division by zero, are caught and treated as
parsing errors. Parsing errors can’t be caught and don’t get logged when
they’re entered interactively, so they don’t make for a good example. (If one
script calls another script and that script has one of these errors, the calling
script can catch it, but the script being parsed cannot.)

Let’s verify that the second error is in $error[0]. We’ll do so by looking at the
exception member

PS (6) > $error[0].exception
Attempted to divide by zero.

Yes, it is. We’ll also verify that the previous error, the file not found error, is now in
position 1.

PS (7) > $error[1].exception
Cannot find path 'C:\working\book\nosuchfile' because it does no
t exist.

Again, yes it is. As you can see, each new error shuffles the previous error down one
element in the array. The key lesson to take away from this is that when you are going
to try to diagnose an error, you should copy it to a “working” variable so it doesn’t
get accidentally shifted out from under you because you made a mistake in one of the
commands you’re using to examine the error.

The $error variable is a convenient way to capture errors automatically, but there
are two problems with it. First, as we discussed earlier, it only captures a limited num-
ber of errors. The second problem is that it mixes all of the errors from all commands
together in one collection. The first problem can be worked around using redirection
to capture all the errors, but that still doesn’t address mixing all the errors together. To
deal with this second issue when you want to capture all the errors from a specific com-
mand, you use a standard parameter on all commands called -ErrorVariable. This

AUTHOR’S
NOTE
ERROR HANDLING 257

parameter names a variable to use for capturing all the errors that the command gen-
erates. Here’s an example. This command generates three error objects, since the files
“nofuss”, “nomuss”, and “nobother” don’t exist.

PS (1) > dir nofuss,nomuss,nobother -ErrorVariable errs
Get-ChildItem : Cannot find path 'C:\Documents and Settings\bruc
epay\nofuss' because it does not exist.
At line:1 char:4

+ dir <<<< nofuss,nomuss,nobother -ErrorVariable errs
Get-ChildItem : Cannot find path 'C:\Documents and Settings\bruc
epay\nomuss' because it does not exist.
At line:1 char:4
+ dir <<<< nofuss,nomuss,nobother -ErrorVariable errs
Get-ChildItem : Cannot find path 'C:\Documents and Settings\bruc
epay\nobother' because it does not exist.
At line:1 char:4
+ dir <<<< nofuss,nomuss,nobother -ErrorVariable errs

In the command, we specified the name of the error variable to place these records
into: “errs”.

In this example, the argument to -ErrorVariable is specified as a string
with no leading $. If it had instead been written as $errs then the errors
would have been stored in the variable named by the value in $errs, not
$errs itself. Also note that the -ErrorVariable parameter works like
a tee; i.e., the objects are captured in the variable, but they are also streamed
to the error output. In a later section, we’ll look at ways to suppress the out-
put of error objects altogether.

Let’s verify that the errors were actually captured. First, the number of elements in
$err should be three.

PS (2) > $errs.count
3

It is. Now let’s dump the errors themselves.

PS (3) > $errs
Get-ChildItem : Cannot find path 'C:\Documents and Settings\bruc
epay\nofuss' because it does not exist.
At line:1 char:4
+ dir <<<< nofuss,nomuss,nobother -ErrorVariable errs
Get-ChildItem : Cannot find path 'C:\Documents and Settings\bruc
epay\nomuss' because it does not exist.
At line:1 char:4
+ dir <<<< nofuss,nomuss,nobother -ErrorVariable errs
Get-ChildItem : Cannot find path 'C:\Documents and Settings\bruc
epay\nobother' because it does not exist.
At line:1 char:4
+ dir <<<< nofuss,nomuss,nobother -ErrorVariable errs

They do, in fact, match the original error output.

AUTHOR’S
NOTE
258 CHAPTER 9 ERRORS, EXCEPTIONS, AND SCRIPT DEBUGGING

They should match the original output because they are actually the same
error objects. The -ev parameter captures references to each object written
to the error stream. In effect, the same object is in two places at once. Well,
three if you count the default $error variable.

Since there is no need to actually see the object twice, you can use redirection to dis-
card the written objects and save only the references stored in the specified variable.
Let’s rerun the example this way.

PS (4) > dir nofuss,nomuss,nobother -ErrorVariable errs 2>$null

This time nothing was displayed; let’s verify the error count:

PS (5) > $errs.count
3

It’s three again, as intended. Let’s just check the TargetObject member of the last
error object to verify that it’s the file name “nobother”.

PS (6) > $errs[0].TargetObject
C:\Documents and Settings\brucepay\nofuss
PS (7) >

Yes, it is. This example illustrates a more sophisticated way of capturing error objects
than merely displaying them. In section 9.1.5, we’ll see an even more flexible way to
control how errors are redirected.

All of these mechanisms provide useful tools for handling collections of error
objects, but sometimes all you care about is that an error occurred at all. A couple of
additional status variables, $? and $LASTEXITCODE, enable you to determine
whether an error occurred.

9.1.3 The $? and $LASTEXITCODE variables

Displaying errors is very useful; it lets the user know what happened. But scripts
also need to know when an error has occurred. To do this, a script can check the
status of the variable $?. This is a Boolean variable that holds the execution status
of the last variable.

The use of the $? variable is borrowed from the UNIX shells (but we prom-
ised to return it folded and pressed, so try not to get it dirty).

The $? variable will be true if the entire operation succeeded, and false otherwise. If any
of the operations generated an error object, then $? will be set to false. This is an impor-
tant point. It means that a script can determine whether an error occurred even if the
error is not displayed. Here are some examples showing the use of $?. We’ll call Get-
Item, passing in two item names that we know exist and one we know doesn’t exist.

AUTHOR’S
NOTE

AUTHOR’S
NOTE
ERROR HANDLING 259

PS (1) > get-item c:,nosuchfile,c:

 Directory:

Mode LastWriteTime Length Name
---- ------------- ------ ----
d--hs 6/13/2006 10:12 PM C:\
Get-Item : Cannot find path 'C:\nosuchfile' because it does not

exist.
At line:1 char:9
+ get-item <<<< c:,nosuchfile,c:
d--hs 6/13/2006 10:12 PM C:\

We got the expected error.

PS (2) > $?
False

And $? is false. Now let’s try the same command, but this time specify only the
names of items that exist.

PS (3) > get-item c:,c:

 Directory:

Mode LastWriteTime Length Name
---- ------------- ------ ----
d--hs 6/13/2006 10:12 PM C:\
d--hs 6/13/2006 10:12 PM C:\

PS (4) > $?
True

This time, there are no errors and $? is true.
Where the $? variable only indicates success or failure, $LASTEXITCODE contains

the exit code of the last command run. This, however, only applies to two types of
commands: native or external commands and PowerShell scripts.

On Windows, when a process exits, it can return a single integer as its exit code.
This integer is used to encode a variety of different conditions, but the only one we’re
interested in is whether it’s zero or non-zero. This is a convention that is used by
almost all programs. If they were successful then their exit code is zero. If they
encountered an error then the exit code will be non-zero. PowerShell captures this
exit code in $LASTEXITCODE, and if that value is non-zero then it sets $? to false.
Let’s use cmd.exe to demonstrate this. You can tell cmd.exe to execute a single
command by passing it the /c option along with the text of the command. In this
example, the command we want to run is exit, which takes a value to use as the exit
code for the command:

PS (1) > cmd /c exit 0

We told cmd.exe to exit with code 0. Verify this by checking the values of $LAST-
EXITCODE and $?, respectively.
260 CHAPTER 9 ERRORS, EXCEPTIONS, AND SCRIPT DEBUGGING

PS (2) > $LASTEXITCODE
0
PS (3) > $?
True

As expected, the exit code was zero, and consequently $? is true. Next try it with a
non-zero value.

PS (4) > cmd /c exit 1
PS (5) > $LASTEXITCODE
1
PS (6) > $?
False

This time, the exit code is 1, so $? is set to false. We can do the same exercises with
scripts. First create a script that exits with a zero exit code.

PS (7) > "exit 0" > invoke-exit.ps1
PS (8) > ./invoke-exit
PS (9) > $LASTEXITCODE
0
PS (10) > $?
True

$LASTEXITCODE is 0 and $? is true. Now try it with a non-zero value.

PS (11) > "exit 25" > invoke-exit.ps1
PS (12) > ./invoke-exit
PS (13) > $LASTEXITCODE
25
PS (14) > $?
False

Now $LASTEXITCODE contains the value the script exited with, which is 25, and $?
is set to false.

So far, we’ve looked at how to capture errors and how to detect when they
occurred. Next we’ll look at some of the methods PowerShell provides to control
what actually happens when an error is generated.

9.1.4 $ErrorActionPreference and the -ErrorAction parameter

Earlier, we talked about the differences between terminating and non-terminating
errors. Sometimes you want to be able to turn non-terminating errors into
terminating ones because the operation you’re performing is too critical to tolerate
non-terminating errors. For example, imagine you’re setting up a website for a user.
You want to reuse a directory that had been previously used for someone else. First
you want to remove all the old files and then install the new user’s files. Obviously,
you can’t start installing the new files until all the old ones are deleted. In this
situation, the failure to delete a file, which is normally a non-terminating error, must
now be treated as a terminating error. The next step in the process can’t begin until
the current step is 100 percent complete.
ERROR HANDLING 261

The way to control whether errors are terminating or non-terminating is by set-
ting the error action preference. This is a mechanism that allows you to control the
behavior of the system when an error occurs. There are three possible settings for this
preference: continue, silentlycontinue, and stop. These preferences are
described in table 9.2.

There are two ways to set the error action preference: by setting the variable $Error-
ActionPreference as in

$ErrorActionPreference = “silentlycontinue”

or by using the -erroraction (or -ea) parameter that is available on all cmdlets.
Let’s see some examples of these preferences in action. Here’s a simple one. First

we’ll run a command that has some non-terminating errors. We’ll use the Get-Item
cmdlet to get two items that exist and two items that don’t exist.

PS (1) > get-item c:\,nosuchfile,c:\,nosuchfile

 Directory:

Mode LastWriteTime Length Name
---- ------------- ------ ----
d--hs 6/13/2006 10:12 PM C:\
Get-Item : Cannot find path 'C:\Documents and Settings\brucepay\
nosuchfile' because it does not exist.
At line:1 char:9
+ get-item <<<< c:\,nosuchfile,c:\,nosuchfile
d--hs 6/13/2006 10:12 PM C:\
Get-Item : Cannot find path 'C:\Documents and Settings\brucepay\
nosuchfile' because it does not exist.
At line:1 char:9
+ get-item <<<< c:\,nosuchfile,c:\,nosuchfile

Table 9.2 The supported values for ErrorActionPreference

Preference Identifier Description

Continue “continue” This is the default preference setting. The error object is
written to the output pipe and added to $error, and $? is set
to false. Execution then continues at the next script line.

Silently Continue “silentlycontinue” When this action preference is set, the error message is
not written to the output pipe before continuing execution.
Note that it is still added to $error and $? is still set to false.
Again, execution continues at the next line.

Stop “stop” This error action preference changes an error from a non-
terminating error to a terminating error. The error object is
thrown as an exception instead of being written to the out-
put pipe. $error and $? are still updated. Execution does
not continue.
262 CHAPTER 9 ERRORS, EXCEPTIONS, AND SCRIPT DEBUGGING

If you look at the output, you can see that there are two output objects and two error
messages. We can use redirection to discard the error messages, making the code eas-
ier to read.

PS (2) > get-item c:\,nosuchfile,c:\,nosuchfile 2> $null

 Directory:

Mode LastWriteTime Length Name
---- ------------- ------ ----
d--hs 6/13/2006 10:12 PM C:\
d--hs 6/13/2006 10:12 PM C:\

Now we just see the output objects because we’ve sent the error objects to $null. We
can use the -erroraction parameter to do the same.

PS (3) > get-item c:\,nosuchfile,c:\,nosuchfile `
>> -ea silentlycontinue
>>

 Directory:

Mode LastWriteTime Length Name
---- ------------- ------ ----
d--hs 6/13/2006 10:12 PM C:\
d--hs 6/13/2006 10:12 PM C:\

Again, the error messages aren’t displayed, but this time it’s because they aren’t being
written at all instead of written and discarded. Finally, let’s try the “stop” preference.

PS (4) > get-item c:\,nosuchfile,c:\,nosuchfile `
>> -ea stop
>>

 Directory:

Mode LastWriteTime Length Name
---- ------------- ------ ----
d--hs 6/13/2006 10:12 PM C:\
Get-Item : Command execution stopped because the shell variable
"ErrorActionPreference" is set to Stop: Cannot find path 'C:\Doc
uments and Settings\brucepay\nosuchfile' because it does not exi
st.
At line:1 char:9
+ get-item <<<< c:\,nosuchfile,c:\,nosuchfile `

This time, you only see one output message and one error message—the first one.
This is because the error is treated as a terminating error and execution stops. Note
that the error message contains additional text explaining that execution stopped
because of the error action preference setting.
ERROR HANDLING 263

Of course, the -erroraction parameter controls the error behavior for exactly
one cmdlet. If you want to change the behavior for an entire script or even a whole
session, you do this by setting the $ErrorActionPreference variable. Let’s redo
the last example, but use the variable instead of the parameter.

PS (5) > & {
>> $ErrorActionPreference="stop"
>> get-item c:\,nosuchfile,c:\,nosuchfile
>> }
>>

 Directory:

Mode LastWriteTime Length Name
---- ------------- ------ ----
d--hs 6/13/2006 10:12 PM C:\
Get-Item : Command execution stopped because the shell variable
"ErrorActionPreference" is set to Stop: Cannot find path 'C:\Doc
uments and Settings\brucepay\nosuchfile' because it does not exi
st.
At line:3 char:9
+ get-item <<<< c:\,nosuchfile,c:\,nosuchfile

Again, the cmdlet stops at the first error instead of continuing.

In this example, note the use of the call operator ‘&’ with a scriptblock con-
taining the scope for the preference setting. Using the pattern

& {
 … script code…
}

you can execute fragments of script code so that any variables set in the
script are discarded at the end of the scriptblock. Because setting $Error-
ActionPreference has such a profound effect on the execution of the
script, we’re using this technique to isolate the preference setting.

Through the -erroractionpreference parameter and the $ErrorAction-
Preference variable, the script author has fine control over when errors are written
and when they are terminating. Non-terminating errors can be displayed or discarded
at will. But what about terminating errors? How does the script author deal with them?
Sometimes you only want an error to terminate part of an operation. For example, you
might have a script move a set of files using a series of steps for each move. If one of the
steps fails, you want the overall move operation to terminate for that file, but you want
to continue processing the rest of the files. To do this, you need a way to trap these ter-
minating errors or exceptions, and that’s what we’ll discuss next.

AUTHOR’S
NOTE
264 CHAPTER 9 ERRORS, EXCEPTIONS, AND SCRIPT DEBUGGING

9.2 DEALING WITH ERRORS
THAT TERMINATE EXECUTION

This section will deal with the way that PowerShell deals with errors that terminate
the current flow of execution, also called terminating errors. Here we’ll cover the lan-
guage elements for dealing with terminating errors and how you can apply these fea-
tures. You’re probably familiar with terminating errors when they are called by their
more conventional name—exceptions. So call them what you will; we’re going to delve
into catching these terminating errors. In other words, how can you grab these errors
and take corrective or remedial actions instead of simply giving up and quitting?

9.2.1 The trap statement

Exceptions are caught using the trap statement. This is a statement that can appear
anywhere in a block of code. When an exception (terminating error) occurs that is
not otherwise handled, control will be transferred to the body of the trap statement.
The body of the trap statement is then executed. The trap statement syntax is
shown in figure 9.1.

You can optionally specify the type of exception to catch; for example, division by
zero. If no exception is specified then it will trap all exceptions.

Here’s an example:

PS (1) > trap { "Got it!" } 1/$null
Got it!
Attempted to divide by zero.
At line:1 char:30
+ trap { "Got it!" ; break } 1/$ <<<< zero

In this example, the statement

 1/$null

was executed. $null is treated like zero in integer expressions, causing a division-by-
zero exception to occur. When this happens, control transfers to the statement list in
the body of the trap statement. In this case, it just writes “Got it!” which we see in
the output. We also see that the error message is still displayed, even though we

trap [<exceptionType >]
{

<statementList >
}

trap keyword Type of exception to
catch (may be omitted)

Body of the trap
statement

Figure 9.1

The syntax of the

trap statement
DEALING WITH ERRORS THAT TERMINATE EXECUTION 265

trapped this exception. This is a significant point. What happens after a trap handler
is complete depends on how the statement terminates. If the body of the statement
simply exits normally then an error object will be written to the error stream, and,
depending on the setting of $ErrorActionPreference, either the exception will
be rethrown or execution will continue at the statement after the statement that
caused the exception. This is what we saw in the previous example. To make this
point clearer, let’s add another statement after the one that caused the error:

PS (2) > trap { "Got it!" } 1/$zero; "LAST"
Got it!
Attempted to divide by zero.
At line:1 char:22
+ trap { "Got it!" } 1/$ <<<< zero; "LAST"
LAST

We see the error message; but following it, we see output from the last statement. The
interpreter’s behavior after you leave the trap handler can be controlled by the
break and continue keywords. (See chapter 6 for other uses of these keywords.)
Let’s look at break first. Here’s the example again, but this time we’ll terminate the
trap block with break.

PS (3) > trap { "Got it!"; break } 1/$zero; "LAST"
Got it!
Attempted to divide by zero.
At line:1 char:30
+ trap { "Got it!"; break } 1/$ <<<< zero; "LAST"

We see the error record, but we don’t see the output “LAST” because after the trap block
exited, the error was rethrown as a terminating error instead of resuming execution.
The other modification to the trap flow control is to use the continue statement.

PS (4) > trap { "Got it!"; continue } 1/$zero; "LAST"
Got it!
LAST

This time, we see the see the output from the trap block and from the “LAST” state-
ment, but no error record. Exiting a trap block is approximately equivalent to the
error action preference “silently continue”.

There is one other feature available in the trap block itself. The exception that
was trapped is available in the trap block in the $_ variable. Here’s the example, but
with the output of the trap statement showing the value in $_ as a string.

PS (5) > trap { "Got it: $_"; continue } 1/$zero;
Got it: Attempted to divide by zero.

In this case, the output is the ToString() of the exception. However, $_ is not an
exception; it’s an error record, so the trap handler has full access to all of the infor-
mation in the error handler. Let’s verify the type of this object.
266 CHAPTER 9 ERRORS, EXCEPTIONS, AND SCRIPT DEBUGGING

PS (6) > trap { "Got it: " + $_.gettype(); continue } 1/$zero;
Got it: System.Management.Automation.ErrorRecord

In the trap block in this example, we’re displaying the type of the value in $_.
Let’s look at a somewhat more complex example. We said earlier that control

transfers to the next statement after the one that caused the exception. That’s not
quite true. It transfers to the next statement in the same scope as the trap statement.
In this example, we’ll use scriptblocks to create the two scopes.

PS (7) > &{
>> trap {"TRAP"}

Here’s the trap block in the outer scope.

>> &{

Now create an inner scope that will emit a number of strings.

>> "one"
>> "two"
>> 1/$null

Part of the way through, throw an exception.

>> "three"
>> "four"
>> }
>> "OUTERBLOCK"

Back in the output block, write out the string "OUTERBLOCK" so we’ll see what’s
happening.

>> }
>>
one
two
TRAP
Attempted to divide by zero.
At line:6 char:3
+ 1/$ <<<< null
OUTERBLOCK

Look at the output that was produced. You can see the first couple of numbers
printed and then the exception, but look where execution resumed—at the first state-
ment outside the block. This pattern allows you to skip entire sections of code instead
of a single line. It essentially mimics the try/catch pattern found in other languages
such as C#.

Having mastered catching exceptions, let’s look at how to throw our own.
DEALING WITH ERRORS THAT TERMINATE EXECUTION 267

9.2.2 The throw statement

To complete the error-handing story, we need a way to generate terminating errors or
exceptions. This is accomplished by using the throw statement.

In the original design, “throw” was supposed to be a cmdlet rather than a
keyword in the language. This was less successful than we would have liked.
Having a cmdlet throw the exception meant that the thrown exception was
subject to the cmdlet’s error action policy, and the whole point of throw
was to bypass this policy and always generate an exception. It wasn’t so much
a case of the tail wagging the dog as it was staple-gunning the poor beast to
the floor. And so, learning from our mistakes, we made it into a keyword.

The syntax of the throw statement is shown in figure 9.2.
The simplest example is to throw nothing:

PS (8) > throw
ScriptHalted
At line:1 char:5
+ throw <<<<

This is convenient for casual scripting. We didn’t need to create an error object or
exception object—the throw statement takes care of all of this. Unfortunately, the
message you get isn’t very informative. If you want to include a meaningful message,
you can easily provide your own:

PS (9) > throw "My Message!"
My Message!
At line:1 char:6
+ throw <<<< "My Message!"

We see the message in the output. It’s also possible to use throw to throw Error-
Record objects or .NET exceptions if you want to use more detailed error handling.
Instead of passing a string, you pass these objects instead.

Now let’s revisit the multi-scope catch and use throw this time instead of divid-
ing by $null.

AUTHOR’S
NOTE

throw [<expression >]

The throw keyword
Option expression that

produces a value to
throw.

Figure 9.2

The syntax of the throw statement
268 CHAPTER 9 ERRORS, EXCEPTIONS, AND SCRIPT DEBUGGING

PS (10) > &{
>> trap { "$_" ; continue}
>> &{
>> "one"
>> "two"
>> throw "CATCH"
>> "three"
>> }

>> "ALL DONE"
>> }
>>
one
two
CATCH
ALL DONE

The pattern is the same as in the previous case, except that now we throw a specific
message that appears in the output. This is then followed by the output from the next
statement in the outer scope.

There are other important applications of the trap statement in function defini-
tions. For instance, times when you want to make a function parameter mandatory.
The throw statement provides an efficient way to do this. Take a look at the follow-
ing function definition.

PS (11) > function hi ($name=$(throw '$name is required'))
>> { "Hi $name" }
>>

In this example, we’re using the throw statement in a subexpression as the initializer
for $name. As you will remember from chapter 7, the initializer expression is exe-
cuted if no value was provided on the command line. Let’s try this function out, first
with a value for name:

PS (12) > hi Bob
Hi Bob

We receive the expected greeting. Next try it without a value.

PS (13) > hi
$name is required
At line:1 char:27
+ function hi ($name=$(throw <<<< '$name is required'))
PS (14) >

We get a terminating error telling us we need to provide a value for $name. This is a
simple pattern that can be used to enforce mandatory parameters on functions and
scripts. And speaking of functions and scripts, while all these error features are great
for letting us know something is wrong, how do we go about fixing the problem?
This is our cue to segue into our next section: debugging.
DEALING WITH ERRORS THAT TERMINATE EXECUTION 269

9.3 SCRIPT DEBUGGING

This section covers the various tools and techniques for debugging PowerShell scripts.
We’ll cover ways you can add a debugging message to your script, the built-in debug-
ging capabilities in the interpreter, and the novel low-level tracing capabilities that are
available through the Trace-Command cmdlet.

9.3.1 Debugging with the host APIs

The most basic form of debugging a script is simply to put statements in your script
that display information about the execution of the script. Since you don’t want your
debugging output mixed into the rest of the output, you need mechanisms to display
output directly on the console. You do this either by using the Write-Host cmdlet
or by using what are called the host APIs. These APIs are available through the $host
variable. This object has the following members:

PS (1) > $host

Name : ConsoleHost
Version : 1.0.10568.0
InstanceId : 5c685c70-c950-4ce5-9aae-78331e4091a7
UI : System.Management.Automation.Internal.Host.In
 ternalHostUserInterface
CurrentCulture : en-US
CurrentUICulture : en-US
PrivateData :

The information available from $host includes the name of the host, its version, and
so forth. The member that we’re most interested in is the UI member. This member sur-
faces a number of methods that can be used to write messages directly to the host instead
of the error stream. The ones we’re most interested in are the read and write methods:

PS (2) > $host.ui | gm [rw]*line*

 TypeName: System.Management.Automation.Internal.Host.Internal
HostUserInterface

Name MemberType Definition
---- ---------- ----------
ReadLine Method System.String ReadLine()
ReadLineAsSecureString Method System.Security.SecureStrin...
WriteDebugLine Method System.Void WriteDebugLine(...
WriteErrorLine Method System.Void WriteErrorLine(...
WriteLine Method System.Void WriteLine(), Sy...
WriteVerboseLine Method System.Void WriteVerboseLin...
WriteWarningLine Method System.Void WriteWarningLin...

For example, if you want to write out a text message, you can do:

PS (3) > $host.ui.writeline("Hi there")
Hi there
270 CHAPTER 9 ERRORS, EXCEPTIONS, AND SCRIPT DEBUGGING

to print out a simple string. Or you can use a more complex form of this method

PS (4) > $host.ui.writeline("red","green", "Hi there")
Hi there

to print out a string in color. You can also get input from the user. To read a line from
the console, use the ReadLine() method:

PS (6) > $host.ui.readline()

Hi
Hi

There is a second level of host UI available called RawUI. This provides even more
low-level functions for accessing the console. For example, to read a single key from
the console, you can do

PS (7) > $host.ui.rawui.readkey()
g
 VirtualKeyCode Character ControlKeyState KeyDown
 -------------- --------- --------------- -------
 71 g 0 True

This returns information about the key code and other attributes of the key press
instead of simply the character.

The other way to access the host interfaces is through the Read-Host and
Write-Host cmdlets. These cmdlets do approximately the same thing as the host
methods, but can be a bit easier to use. In particular, the Read-Host cmdlet allows
you to specify a prompt when reading:

PS (8) > read-host "Enter some text"
Enter some text: some text
some text

It even inserts a colon after your text when prompting.
Using the features described in this section, you can instrument your scripts in

order to debug their behavior. While this is a tried and true way of debugging, Pow-
erShell provides some tools that are a bit more, shall we say, modern? It's worth it to
take a look at these features.

9.3.2 The Set-PSDebug cmdlet

PowerShell provides some built-in debugging capabilities. These are available through
the Set-PSDebug cmdlet. This cmdlet allows you to turn on tracing and stepping,
and also enable a form of “strict-mode”. The syntax for this command is shown in
figure 9.3.

The details of each of these features are covered in the following sections.

9.3.3 Tracing statement execution

Basic script tracing is turned on by setting as follows:

PS (1) > Set-PSDebug -trace 1
SCRIPT DEBUGGING 271

In this trace mode, each statement executed by the interpreter will be displayed on
the console as shown.

PS (2) > 2+2
DEBUG: 1+ 2+2
4
PS (3) > $a=3
DEBUG: 1+ $a=3
PS (4) > pwd
DEBUG: 1+ pwd

Path

C:\files

The debugging output is prefixed with the DEBUG: tag and is typically shown in a
different color than normal text. Note that the entire script line is displayed. This
means that if you have a loop all on one line, you’ll see the line repeated:

PS (5) > foreach ($i in 1..3) {"i is $i"}
DEBUG: 1+ foreach ($i in 1..3) {"i is $i"}
DEBUG: 1+ foreach ($i in 1..3) {"i is $i"}
i is 1
DEBUG: 1+ foreach ($i in 1..3) {"i is $i"}
i is 2
DEBUG: 1+ foreach ($i in 1..3) {"i is $i"}
i is 3

In this example, you’ll see the line repeated four times: once for evaluating the expres-
sion 1..3 in the foreach loop and then once for each iteration of the loop, for a
total of four times. This is a good reason, even though PowerShell doesn’t require it,
to write scripts with one statement per line. It can help with debugging.

Set-PSDebug [-Trace <Int32>] [-Step] [-Strict]

Set-PSDebug -Off

Set Script Tracing Level
0 = off

1 = basic
2 = full

Turn on Strict Mode
Turn on
stepping

Turn all debugging
features off

Figure 9.3

The Set-PSDebug

cmdlet parameters
272 CHAPTER 9 ERRORS, EXCEPTIONS, AND SCRIPT DEBUGGING

Basic tracing doesn’t show you any function calls or scripts you’re executing. First,
define a function foo:

PS (6) > function foo {"`$args is " + $args}
DEBUG: 1+ function foo {"`$args is " + $args}

And run it in a loop:

PS (7) > foreach ($i in 1..3) {foo $i}

DEBUG: 1+ foreach ($i in 1..3) {foo $i}
DEBUG: 1+ foreach ($i in 1..3) {foo $i}
DEBUG: 1+ function foo {"`$args is " + $args}
$args is 1
DEBUG: 1+ foreach ($i in 1..3) {foo $i}
DEBUG: 1+ function foo {"`$args is " + $args}
$args is 2
DEBUG: 1+ foreach ($i in 1..3) {foo $i}
DEBUG: 1+ function foo {"`$args is " + $args}
$args is 3

You can see the line that’s being executed, but you can’t see the actual function call.
Here we’ll turn on full tracing.

PS (8) > Set-PSDebug -trace 2
DEBUG: 1+ Set-PSDebug -trace 2

In this mode, you will see the function calls:

PS (9) > foreach ($i in 1..3) {foo $i}
DEBUG: 1+ foreach ($i in 1..3) {foo $i}
DEBUG: 1+ foreach ($i in 1..3) {foo $i}
DEBUG: ! CALL function 'foo'
DEBUG: 1+ function foo {"`$args is " + $args}
$args is 1
DEBUG: 1+ foreach ($i in 1..3) {foo $i}
DEBUG: ! CALL function 'foo'
DEBUG: 1+ function foo {"`$args is " + $args}
$args is 2
DEBUG: 1+ foreach ($i in 1..3) {foo $i}
DEBUG: ! CALL function 'foo'
DEBUG: 1+ function foo {"`$args is " + $args}
$args is 3

In addition to this, full tracing adds to the display by showing you variable assign-
ments. Let’s redefine our function so that it performs a variable assignment. We’ll
split it across multiple lines so the trace is a bit clearer:

PS (10) > function foo {
>> $x = $args[0]
>> "x is $x"
>> }
>>
DEBUG: 1+ function foo {
SCRIPT DEBUGGING 273

And run it again.

PS (11) > foreach ($i in 1..3) {foo $i}
DEBUG: 1+ foreach ($i in 1..3) {foo $i}
DEBUG: 1+ foreach ($i in 1..3) {foo $i}
DEBUG: ! CALL function 'foo'
DEBUG: 2+ $x = $args[0]
DEBUG: ! SET $x = '1'.
DEBUG: 3+ "x is $x"
}
x is 1
DEBUG: 1+ foreach ($i in 1..3) {foo $i}
DEBUG: ! CALL function 'foo'
DEBUG: 2+ $x = $args[0]
DEBUG: ! SET $x = '2'.
DEBUG: 3+ "x is $x"
}
x is 2
DEBUG: 1+ foreach ($i in 1..3) {foo $i}
DEBUG: ! CALL function 'foo'
DEBUG: 2+ $x = $args[0]
DEBUG: ! SET $x = '3'.
DEBUG: 3+ "x is $x"
}
x is 3

You can see that for each iteration in the loop, tracing shows the

• Loop iteration

• Function call

• Statement doing the assignment

• Actual assignment to $x including the value assigned

• Statement that emits the value

The value displayed is the string representation of the object being assigned, trun-
cated to fit in the display. It depends on the ToString() method defined for that
object to decide what to display. This isn’t always as useful as one would like. For
example, with the hashtable:

PS (12) > $a = @{x=1; y=2}
DEBUG: 1+ $a = @{x=1; y=2}
DEBUG: ! SET $a = 'System.Collections.Hashtable'.

It shows you the type of the object, but nothing about its actual value. For arrays and
other collections, it shows you a truncated representation of the elements of the list.
So, for an array of one hundred numbers, you see:

PS (13) > $a = 1..100
DEBUG: 1+ $a = 1..100
DEBUG: ! SET $a = '1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 18 19 20 21 22 23...'.
274 CHAPTER 9 ERRORS, EXCEPTIONS, AND SCRIPT DEBUGGING

Overall, script tracing is pretty effective, but sometimes you still need to add calls to
Write-Host to your script to help with debugging.

9.3.4 Stepping through statement execution

The next debugging feature we’ll look at is the mechanism that PowerShell provides
for stepping through a script. You turn stepping on by calling the Set-PSDebug
cmdlet with the -step parameter.

PS (14) > Set-PSDebug -step
DEBUG: 1+ Set-PSDebug –step

Rerun the foreach loop and take a look at the prompt that’s displayed:

PS (15) > foreach ($i in 1..3) {foo $i}

Continue with this operation?
 1+ foreach ($i in 1..3) {foo $i}
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend
[?] Help(default is "Y"): y
DEBUG: 1+ foreach ($i in 1..3) {foo $i}

Continue with this operation?
 1+ foreach ($i in 1..3) {foo $i}
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend
[?] Help(default is "Y"): y
DEBUG: 1+ foreach ($i in 1..3) {foo $i}
DEBUG: ! CALL function 'foo'

Continue with this operation?

The interpreter displays the line to be executed, then asks the user to select one of Yes,
Yes to All, No, or No to All. The default is “Yes”.

If you answer “Yes”, then that line will be executed and you will be prompted as
to whether you want to execute the next line. If you answer “Yes to All”, then step
mode will be turned off and execution will continue normally. If you answer either
“No” or “No to All”, the current execution will be stopped and you will be returned
to the command prompt. There is no difference in the behavior between “No” and
“No to All”. The following shows the message you will see if you enter “No”.

Continue with this operation?
 2+ $x = $args[0]
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend
[?] Help(default is "Y"): y
DEBUG: 2+ $x = $args[0]
DEBUG: ! SET $x = '2'.

Continue with this operation?
 3+ "x is $x"
}
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend
SCRIPT DEBUGGING 275

[?] Help(default is "Y"): l
WriteDebug stopped because the DebugPreference was 'Stop'.
At line:1 char:23
+ foreach ($i in 1..3) {f <<<< oo $i}
PS (16) >

As you can see, this is a pretty limited feature. Full debugging was cut from
version one of PowerShell. We were only able to provide the most basic fea-
tures. This will be corrected in future releases. We didn’t even get a chance
to make what’s there pretty. It is, however, still useful.

There is one more option in the stepping list that we haven’t talked about yet, and
that is “Suspend”. This option is interesting enough to merit its own section, and is
discussed in section 9.4. In the meantime, let’s finish our discussion of the Set-
PSDebug debugging features.

9.3.5 Catching undefined variables with strict mode

The last debugging feature accessible through Set-PSDebug is “strict mode”.

This feature is conceptually similar to “Option Explicit” in Visual Basic or
strict mode in PERL, and is named after the PERL feature, though it’s not
as rigorous as either the VB or PERL features. Still, it can make it easier to
write a robust script.

Normally in PowerShell, if a variable is undefined, it’s treated as though it has the
value $null. We can try this in an expression.

PS (1) > 2 * $nosuchvariable
0

In this expression, $nosuchvariable is not defined. This means that it is treated as
though it were $null. And $null in a numeric expression is treated as zero, so the
whole expression evaluates to zero. It is important to note that the variable is treated
as though it were null. This doesn’t mean that there is now a variable called
$nosuchvariable. We can verify this with the dir command:

PS (2) > dir variable:\nosuchvariable
Get-ChildItem : Cannot find path 'nosuchvariable' because it doe
s not exist.
At line:1 char:4
+ dir <<<< variable:\nosuchvariable

Now turn on strict mode

PS (3) > Set-PSDebug –strict

and try the expression again:

PS (4) > 2 * $nosuchvariable
The variable $nosuchvariable cannot be retrieved because it has
not been set yet.
At line:1 char:19
+ 2 * $nosuchvariable <<<<

AUTHOR’S
NOTE

AUTHOR’S
NOTE
276 CHAPTER 9 ERRORS, EXCEPTIONS, AND SCRIPT DEBUGGING

This time, you are sent an error telling you that the variable has not been defined. So
let’s define it.

PS (5) > $nosuchvariable=13

Run the expression again:

PS (6) > 2 * $nosuchvariable
26

We get the expected result. Delete the variable:

PS (7) > del variable:\nosuchvariable

and run the expression for a third time.

PS (8) > 2 * $nosuchvariable
The variable $nosuchvariable cannot be retrieved because it has
not been set yet.
At line:1 char:19
+ 2 * $nosuchvariable <<<<

We’re back to the error message.

9.4 NESTED PROMPTS AND BREAKPOINTS

One of the more interesting aspects of dynamic language environments is that a script
can recursively call the interpreter. We’ve already seen this with the Invoke-
Expression cmdlet in chapter 8. A variation of this is to call the interpreter in
interactive mode. This means that you essentially suspend the current session and
start a new session. In other words, you can suspend the currently executing Power-
Shell code and interact with PowerShell at what is called a nested prompt. Why is this
interesting? Because now you can type commands that can examine and modify the
state of the suspended session. And instead of creating a language just for debugger
operations, you use the same language you’re debugging. There are a couple ways to
enter a nested prompt session, as we’ll see in the next couple sections.

9.4.1 Suspending a script while in step-mode

Creating a nested interactive session is what the “Suspend” operation does. Let’s try it
out. First turn on stepping:

PS (1) > Set-PSDebug –step

then run a statement that should loop 10 times, printing out the numbers from 1 to 10:

PS (2) > $i=0; while ($i++ -lt 10) { $i }

Continue with this operation?
 1+ $i=0; while ($i++ -lt 10) { $i }
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend
[?] Help(default is "Y"):
DEBUG: 1+ $i=0; while ($i++ -lt 10) { $i }
NESTED PROMPTS AND BREAKPOINTS 277

We’ll see all of the intermediate blather. Keep stepping until you see the first number
displayed.

Continue with this operation?
 1+ $i=0; while ($i++ -lt 10) { $i }
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend
[?] Help(default is "Y"):
DEBUG: 1+ $i=0; while ($i++ -lt 10) { $i }

Continue with this operation?
 1+ $i=0; while ($i++ -lt 10) { $i }
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend
[?] Help(default is "Y"):
DEBUG: 1+ $i=0; while ($i++ -lt 10) { $i }
1

At this point, use the suspend operation, and when you see the prompt, respond with
“s<enter>” instead of hitting enter.

Continue with this operation?
 1+ $i=0; while ($i++ -lt 10) { $i }
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend
[?] Help(default is "Y"): y
DEBUG: 1+ $i=0; while ($i++ -lt 10) { $i }
1

Continue with this operation?
 1+ $i=0; while ($i++ -lt 10) { $i }
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend
[?] Help(default is "Y"): s
1>> PS (3) >

You immediately receive a new prompt. Notice that the prompt has changed to indi-
cate that you are in a subshell.

The way to tell this is by checking the variable $NestedPromptLevel.
If you are in a nested prompt, this variable will be greater than zero.

In this nested prompt, we can do anything we would normally do in PowerShell. In
this case, we want to inspect the state of the system. For example, we’ll check to see
what the variable $i is set to. Since the last statement executed was $i++ and the
printed value for $i was 1, the value should be 2

1>> PS (4) > $i
2

In fact, it is. But we’re not limited to inspecting the state of the system. We can actu-
ally change it. In this case, let’s make the loop end early by setting the value to some-
thing larger than the terminating condition. We’ll set it to 100.

1>> PS (5) > $i=100
1>> PS (6) > $i
100

AUTHOR’S
NOTE
278 CHAPTER 9 ERRORS, EXCEPTIONS, AND SCRIPT DEBUGGING

Now exit the nested prompt session with the normal exit statement. This returns
you to the previous level in the interpreter where, since we’re stepping, you’re
prompted to continue. Respond with “a<enter>” for “[A] Yes to All” to get out of
stepping mode.

1>> PS (7) > exit

Continue with this operation?
 1+ $i=0; while ($i++ -lt 10) { $i }
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend
[?] Help(default is "Y"): a
DEBUG: 1+ $i=0; while ($i++ -lt 10) { $i }
100

There are two things to notice here: the loop terminates, printing only one number,
and that value is the value we set $i to, which is 100. We’ll check one more time to
verify that $i is actually 100.

PS (8) > $i
100

Using this suspend feature, you stop a script at any point and examine or modify the
state of the interpreter. You could even redefine functions in the middle of execution
(although you can’t change the function that is currently executing). This makes for a
powerful debugging technique, but it can be annoying to use stepping all the time, so
there’s another way to invoke this. That’s the topic of the next section.

9.4.2 Creating a breakpoint command

In section 9.3.1, we introduced the $host variable and talked about using it to write
our debugging messages. The $host variable has another method that can be used
for debugging called EnterNestedPrompt(). This is the other way to start a
nested session, and can be used approximately like a breakpoint. You can insert a call
to this method in your script code, and when it’s hit, a new interactive session starts,
just like hitting a breakpoint in a debugger. Let’s try it out. We’ll execute a loop that
counts from 0 to 9. In this loop, when the loop counted is equal to 4, we’ll call
EnterNestedPrompt().

PS (1) > for ($i=0; $i -lt 10; $i++)
>> {
>> "i is $i"
>> if ($i -eq 4) {

When execution gets to this point, we’ll output the string “*break*” and then enter a
nested prompt level.

>> "*break*"
>> $host.EnterNestedPrompt()
>> }
>> }
NESTED PROMPTS AND BREAKPOINTS 279

>>
i is 0
i is 1
i is 2
i is 3
i is 4

Now $i is equal to four, so we hit the “breakpoint” code. As in the stepping case, we
can examine and change the state of the interpreter,

break
1>> PS (2) > $i
4
1>> PS (3) > $i=8

and use exit to resume the top-level execution thread.

1>> PS (4) > exit
i is 9
PS (6) >

Now let’s look at how we can use this feature to create a breakpoint command. Once
again, we’ll take advantage of scriptblocks to add a way to trigger the breakpoint
based on a particular condition.

PS (1) > function bp ([scriptblock] $condition)
>> {
>> if ($condition)
>> {
>> if (. $condition)
>> {

If the $condition parameter to bp is not null, evaluate it. If it evaluates to $true,
then execute the breakpoint and enter a nested shell level.

>> $host.UI.WriteLine("*break*")
>> $host.EnterNestedPrompt()
>> }
>> } else {
>> $host.UI.WriteLine("*break*")
>> $host.EnterNestedPrompt()
>> }
>> }
>>
PS (2) > for ($i=0; $i -lt 10; $i++)
>> {
>> . bp {$i -eq 5}

Here we’re inserting a breakpoint that will cause execution to break when $i is equal
to 5. Note that we’re dotting the bp function. This is because we want it to be exe-
cuted in the current scope, allowing us to change the state of the loop variable.
280 CHAPTER 9 ERRORS, EXCEPTIONS, AND SCRIPT DEBUGGING

>> "`$i is $i"
>> }
>>
$i is 0
$i is 1
$i is 2
$i is 3
$i is 4

break

We hit the breakpoint. Increment the loop variable so that 5 is never displayed, and
exit the nested prompt level and resume execution.

1>> PS (3) > $i++
1>> PS (4) > exit
$i is 6
$i is 7
$i is 8
$i is 9
PS (5) >

The loop exits, never having printed 5.
This bp function is a handy tool to keep in your script debugging toolbox. You

must modify your scripts to use the bp function, but it can really help when debug-
ging complex scripts.

9.4.3 The script call stack, or “How did I get here?”

The bp function is a handy little debugging tool. From within a nested prompt, you
can examine and change the state of interpreter. Another tool that would be nice
would be one that tells you where you are and how you got there. In other words, we
need a way to dump the script call stack. How to do this in PowerShell is not obvious,
but it is possible. The key is to use the $MyInvocation variable. This variable is set
to a new value every time you call a function or script. It provides you with a lot of
information about what kind of command is running, where it was defined, and
where it was called from. We can write a short script to illustrate this. We’ll use redi-
rection to save it into a file myinfo.ps1.

PS (1) > @'
>> function showit
>> {
>> "Called from:" + $myinvocation.scriptname + ":" +
>> $myinvocation.scriptlinenumber
>> }
>>
>> showit
>> '@ > myinfo.ps1
>>

This script defines a function that prints out the information about where it was
called from, and then calls the function it defined:
NESTED PROMPTS AND BREAKPOINTS 281

PS (2) > ./myinfo
Called from:C:\Temp\myinfo.ps1:6
PS (3) >

We can see that the function faithfully reported where it was called from.

There are a number of interesting properties on the InvocationInfo
object in $MyInvocation. We won’t be covering them here, so take
some time to explore it using Get-Member. The PowerShell software de-
veloper’s kit also documents this object.

We can figure out where the current function was called from. The trick is to find out
where its parent was called from. This requires looking up the call stack and seeing
what $MyInvocation was set to for the parent. The way to do that is to use the
Get-Variable cmdlet. This cmdlet has a parameter that’s used to specify what
scope you want to get the variable from. If you specify scope 0, it looks the variable
up in the current scope. If you specify 1 then the parent scope is searched, and so on.

We’ll take these two features and combine them in a function called gcs that will
display the script call stack. Here’s what that function looks like:

function gcs
{
 trap { continue }
 0..100 | % {
 (gv -scope $_ myinvocation).value.positionmessage -replace "`n"
 }
}

This is a pretty simple function. It walks up the call stack, starting at 0 (current
scope), until an error occurs. At that point, the trap statement catches the error and
uses the continue statement to quietly exit the function. For each scope level, we
print out a message displaying where it was called from. At this point we create a test
script with a grouping of functions that call each other:

PS (1) > @'
>> function a { b }
>> function b { c }
>> function c { d }
>> function d { e }
>> function e { gcs }
>> a
>> '@ > showstack.ps1
>>

In this function, a calls b, which calls c, and so on until finally e calls our gcs func-
tion. Let’s run it:

PS (2) > ./showstack
At C:\Temp\showstack.ps1:5 char:17+ function e { gss <<<< }
At C:\Temp\showstack.ps1:4 char:15+ function d { e <<<< }
At C:\Temp\showstack.ps1:3 char:15+ function c { d <<<< }

AUTHOR’S
NOTE
282 CHAPTER 9 ERRORS, EXCEPTIONS, AND SCRIPT DEBUGGING

At C:\Temp\showstack.ps1:2 char:15+ function b { c <<<< }
At C:\Temp\showstack.ps1:1 char:15+ function a { b <<<< }
At C:\Temp\showstack.ps1:6 char:2+ a <<<<
At line:1 char:11+ ./showstack <<<<

We can see that the output starts with the innermost call and works its way back out
until it reaches the line that called the script in the first place. Each line of output
shows the file and line number where the function was called and what the line looks
like. To make it even clearer, we’ll modify the myinfo.ps1 script from earlier to call
gcs and then call myinfo from showstack instead. (The actual modifications are
left as an exercise for the reader.) Here’s what the output of the revised set of scripts
looks like:

PS (3) > C:\Temp\showstack.ps1
Called from:C:\Temp\myinfo.ps1:7
At C:\Temp\myinfo.ps1:5 char:8+ gcs <<<< }
At C:\Temp\myinfo.ps1:7 char:7+ showit <<<<
At C:\Temp\showstack.ps1:19 char:13+ ./myinfo <<<< }
At C:\Temp\showstack.ps1:15 char:6+ e <<<< }
At C:\Temp\showstack.ps1:11 char:6+ d <<<< }
At C:\Temp\showstack.ps1:7 char:6+ c <<<< }
At C:\Temp\showstack.ps1:3 char:6+ b <<<< }
At C:\Temp\showstack.ps1:21 char:2+ a <<<<
At line:1 char:21+ C:\Temp\showstack.ps1 <<<<

First we see the line of output explicitly written by the myinfo script and then we see
call stack displayed, starting at gcs and ending at the command typed on the com-
mand line. Notice that transition between the two files in the output. This makes it
easy to see the call order of the functions in different scripts.

The gcs function is another simple tool you can use to help debug your scripts.
In the next section we'll look at a more detailed tracing mechanism that lets you see
into the operation of the PowerShell interpreter itself.

9.5 LOW-LEVEL TRACING

The next type of tracing we’re going to cover is the internal expression tracing facility.
This is a much lower-level tracing mechanism than script tracing. In fact, it’s imple-
mented using a tracing mechanism in the .NET framework that is designed for use by
application developers, not end-users. It was originally intended to allow Microsoft to
debug PowerShell applications deployed in the field, but it turns out to be quite use-
ful for script developers. It is, however, not for the faint of heart. It traces the execu-
tion of the engine at the level of object constructor and method calls. As such, it can
be very “noisy” with a lot of detail that most users would prefer to avoid.

9.5.1 The Trace-Command cmdlet

Low-level expression tracing is controlled by the Trace-Command cmdlet.
LOW-LEVEL TRACING 283

It is an unfortunate accident of timing that this cmdlet ended up being
called Trace-Command instead of Trace-Expression. Two separate
cleanup activities were undertaken at the same time, with the result that
this cmdlet ended up with a strange name. It is, however, fully functional.

This cmdlet has a complex set of parameters. A subset of those parameters is shown in
figure 9.4.

As you can see from the names of the parameters, it is very developer-focused. A
“listener” is a mechanism for capturing the trace events and routing them to a partic-
ular location. There are three listeners that you can specify using this cmdlet. These
are described in table 9.3.

You can specify any or all of these listeners, and the trace records will be written to all
that were specified.

The -ListenerOption parameter allows you to control the information that
appears in each trace record. The type of information includes things such as the date
and time, as well as more complex information such as the process and thread identi-
fiers and the call stack.

Table 9.3 The various trace listener options you can specify

Trace listener option Description

-PSHost When this option is specified, the trace events will be
written to the console.

-Debugger If a debugger is attached to the PowerShell process,
the debugger will receive the trace events.

-FilePath <string> Writes the trace records to a file for later examination.

AUTHOR’S
NOTE

Trace-Command [-Name] <String []> [-Expression] <ScriptBlock >
[[-Option] <PSTraceSourceOptions >]
[-ListenerOption <TraceOptions >]
[-FilePath <String >]
[-Debugger]
[-PSHost]

Specifies the category of activity to
trace

The PowerShell
expression to trace

Specifies where the
trace output goes

Controls the details
of what is logged

Specifies the code
element to trace

Figure 9.4 The Trace-Command cmdlet parameters
284 CHAPTER 9 ERRORS, EXCEPTIONS, AND SCRIPT DEBUGGING

The -Option parameter controls the type of operation to call. Types of operations
include specific .NET activities such as object construction, method calls, and prop-
erty references as well as more general categories such as “WriteLine”, “Verbose”, and
so on. A list of these options can be specified, and all of the categories mentioned will
be displayed. Alternatively, if you specify the category “All”, everything will be shown
(this is what is usually used).

The last parameter to discuss is -Name. This parameter selects the category of the
trace events to display. Although there are a large number of trace categories, there
are really only two that are of interest to the script author: typeconversion and
parameterbinding. We’ll cover these in the next two sections.

9.5.2 Tracing type conversions

First, we’ll talk about tracing type conversions. Because automatic type conversion is so
important in PowerShell, having a way of seeing exactly what’s going on is very useful.
Let’s look at an example. We’ll trace a simple conversion, from a string to a number:

[int] "123"

We’re going to trace all of the activities, so we’ll specify -Option all, and we want
the output to go to the console, so we’ll also specify -PShost. Here’s what it looks
like (this is all the output from one command, by the way!):

PS (1) > trace-command -opt all typeconversion {[int] "123"} `
>> -pshost
>>
DEBUG: TypeConversion Information: 0 : Converting "int" to
"System.Type".

This is the first conversion—taking the type literal [int] and resolving it to the
instance of System.Type that represents an integer.

DEBUG: TypeConversion Information: 0 : Original type before
getting BaseObject: "System.String".
DEBUG: TypeConversion Information: 0 : Original type after
getting BaseObject: "System.String".
DEBUG: TypeConversion Information: 0 : Standard type
conversion.
DEBUG: TypeConversion Information: 0 : Converting
integer to System.Enum.
DEBUG: TypeConversion Information: 0 : Type conversion
from string.
DEBUG: TypeConversion Information: 0 : Conversion to
 System.Type

And we’re done with step 1; we now have the type we need.

DEBUG: TypeConversion Information: 0 : The conversion is a
standard conversion. No custom type conversion will be
attempted.
DEBUG: TypeConversion Information: 0 : Converting "123" to
"System.Int32".
LOW-LEVEL TRACING 285

The next step is to figure out how to convert the string “123” into an integer.

DEBUG: TypeConversion Information: 0 : Original type before
getting BaseObject: "System.String".
DEBUG: TypeConversion Information: 0 : Original type after
getting BaseObject: "System.String".
DEBUG: TypeConversion Information: 0 : Standard type
conversion.
DEBUG: TypeConversion Information: 0 : Converting
integer to System.Enum.
DEBUG: TypeConversion Information: 0 : Type conversion
from string.
DEBUG: TypeConversion Information: 0 : Converting to
 integer.
DEBUG: TypeConversion Information: 0 : The conversion is a
standard conversion. No custom type conversion will be
attempted.

This is a standard .NET type conversion, so no special steps are needed. The conver-
sion is performed and finally we get the result as a number.

123
PS (2) >

Did you follow all that? Remember what I said about this type of tracing being ver-
bose? I wasn’t kidding. Let’s look at a second example. Again, we’ll trace everything
and output to the console. This time, we’ll trace casting a string into an [xml]. We’ll
also use the -ListenerOption parameter to say that we want to include the time-
stamp in the option. Here we go:

PS (6) > trace-command -opt all typeconversion -pshost `
>> -listen timestamp `
>> { [xml] '<h>Hi</h>' }

>>
DEBUG: TypeConversion Information: 0 : Converting "xml" to
"System.Type".
DEBUG: Timestamp=5536598202692

Again, the first step is to resolve the type literal. Note that timestamp information is
now being output as we requested.

DEBUG: TypeConversion Information: 0 : Original type before
getting BaseObject: "System.String".
DEBUG: Timestamp=5536598216733
DEBUG: TypeConversion Information: 0 : Original type after
getting BaseObject: "System.String".
DEBUG: Timestamp=5536598230212
DEBUG: TypeConversion Information: 0 : Standard type
conversion.
DEBUG: Timestamp=5536598243271
DEBUG: TypeConversion Information: 0 : Converting
integer to System.Enum.
DEBUG: Timestamp=5536598255383
DEBUG: TypeConversion Information: 0 : Type conversion
286 CHAPTER 9 ERRORS, EXCEPTIONS, AND SCRIPT DEBUGGING

from string.
DEBUG: Timestamp=5536598267714
DEBUG: TypeConversion Information: 0 : Conversion to
 System.Type
DEBUG: Timestamp=5536598279950
DEBUG: TypeConversion Information: 0 : The conversion is a
standard conversion. No custom type conversion will be
attempted.

DEBUG: Timestamp=5536598292383
DEBUG: TypeConversion Information: 0 : Converting "<h>Hi</h>" to
 "System.Xml.XmlDocument".

This tells us what the final type of the object will be.

DEBUG: Timestamp=5536598308660
DEBUG: TypeConversion Information: 0 : Original type before
getting BaseObject: "System.String".
DEBUG: Timestamp=5536598321106
DEBUG: TypeConversion Information: 0 : Original type after
getting BaseObject: "System.String".
DEBUG: Timestamp=5536598334410
DEBUG: TypeConversion Information: 0 : Standard type
conversion.
DEBUG: Timestamp=5536598347058
DEBUG: TypeConversion Information: 0 : Converting to
XmlDocument.
DEBUG: Timestamp=5536598382014
DEBUG: TypeConversion Information: 0 : Standard type
conversion to XmlDocument.
DEBUG: Timestamp=5536598396299
DEBUG: TypeConversion Information: 0 : The conversion is a
standard conversion. No custom type conversion will be
attempted.
DEBUG: Timestamp=5536598409092

h
-
Hi

Finally, the XML object is displayed. Now let’s look at tracing parameter binding.

9.5.3 Tracing parameter binding

The other category of trace information that is interesting to the script user is param-
eter binding. This allows you to see just how the parameters are being bound to a
cmdlet. The example we’ll use is the simple command:

"c:\" | get-item

In this example, Get-Item will take its mandatory parameter -path from pipeline.
When we run the command we see that the set of parameters is mostly the same as
in the previous section, except that we’re now using the parameterbinding trace
category.
LOW-LEVEL TRACING 287

PS (7) > trace-command -opt all parameterbinding -pshost `
>> { "c:\" | get-item }
>>

The first step is to go through each of the command-line parameter binding steps—
named parameters, positional parameters, and finally dynamic parameters (see chap-
ter 2 for more information for each of these steps).

DEBUG: ParameterBinding Information: 0 : BIND NAMED cmd line
args [Get-Item]
DEBUG: ParameterBinding Information: 0 : BIND POSITIONAL cmd
line args [Get-Item]
DEBUG: ParameterBinding Information: 0 : BIND cmd line args to
DYNAMIC parameters.
DEBUG: ParameterBinding Information: 0 : MANDATORY PARAMETER
CHECK on cmdlet [Get-Item]

At this point, the parameter binder is checking to see if there are any unbound man-
datory parameters that can’t be bound to input from the pipeline. If this were the
case, a terminating error would occur here. Since this is not the case in this example,
the binding process continues.

DEBUG: ParameterBinding Information: 0 : CALLING BeginProcessing
DEBUG: ParameterBinding Information: 0 : BIND PIPELINE object to
 parameters: [Get-Item]
DEBUG: ParameterBinding Information: 0 : PIPELINE object
TYPE = [System.String]

We have an object from the pipeline to bind.

DEBUG: ParameterBinding Information: 0 : RESTORING pipeline
parameter's original values

First, restore all of the parameters that can take pipeline input to their default state,
since not all of them may be bound from this object.

DEBUG: ParameterBinding Information: 0 : Parameter [Path]
PIPELINE INPUT ValueFromPipeline NO COERCION

This is the first step in matching the parameter; if the parameter type exactly
matches, then binding proceeds immediately.

DEBUG: ParameterBinding Information: 0 : BIND arg [c:\] to
parameter [Path]
DEBUG: ParameterBinding Information: 0 : Binding
collection parameter Path: argument type [String], parameter
type [System.String[]], collection type Array, element type
[System.String], no coerceElementType

In this case, the target type is a collection, but the element type of the collection
matches the pipeline object, so the interpreter will wrap the pipeline object in an
array so the binding can succeed.
288 CHAPTER 9 ERRORS, EXCEPTIONS, AND SCRIPT DEBUGGING

DEBUG: ParameterBinding Information: 0 : Creating array
with element type [System.String] and 1 elements
DEBUG: ParameterBinding Information: 0 : Argument type
String is not IList, treating this as scalar
DEBUG: ParameterBinding Information: 0 : Adding scalar
element of type String to array position 0
DEBUG: ParameterBinding Information: 0 : BIND arg
[System.String[]] to param [Path] SUCCESSFUL

At this point, we’ve bound the -path parameter. Let’s check the remaining parame-
ters that can take their values from the pipeline.

DEBUG: ParameterBinding Information: 0 : Parameter
[Credential] PIPELINE INPUT ValueFromPipelineByPropertyName NO
COERCION
DEBUG: ParameterBinding Information: 0 : Parameter
[Credential] PIPELINE INPUT ValueFromPipelineByPropertyName WITH
 COERCION

Nothing was bound at this point, so the last thing to do is check to make sure that all
mandatory parameters for this cmdlet are now bound. If there were an unbound
mandatory parameter, a non-fatal error would be generated and an error record would
be written to the output pipe. Note how this is different from the command-line
parameters. In that case, it’s a fatal error; there’s no way to continue. For the pipeline
parameter, even if the current object doesn’t result in all parameters being bound
successfully, the next pipeline object may succeed. This is why pipeline binding failures
are non-terminating and command-line binding failures are terminating.

DEBUG: ParameterBinding Information: 0 : MANDATORY PARAMETER
CHECK on cmdlet [Get-Item]

Finally, now that all parameters are bound, the cmdlet’s ProcessRecord and End-
Processing clauses are executed.

DEBUG: ParameterBinding Information: 0 : CALLING ProcessRecord
DEBUG: ParameterBinding Information: 0 : CALLING EndProcessing

 Directory:

Mode LastWriteTime Length Name
---- ------------- ------ ----
d--hs 6/9/2006 2:30 AM C:\

Again, this is a verbose tracing mechanism, but it shows you the binding algorithm in
great detail. If you are having a problem understanding why a pipeline is exhibiting
some unexpected behavior, this is the way to see what’s happening. You can also com-
bine the two tracing mechanisms to see even more detail of what’s going on. We can
try this with a user-defined function just to see that this mechanism works with func-
tions as well as cmdlets. First we’ll define a function:

PS (8) > function foo ([int] $x) {$x}
LOW-LEVEL TRACING 289

Now let’s trace its execution.

PS (9) > trace-command -opt all parameterbinding,
>> typeconversion -pshost {foo "123"}
>>
DEBUG: ParameterBinding Information: 0 : POSITIONAL parameter
[x] found for arg []

We see the parameter binding trace messages for positional parameter binding.

DEBUG: ParameterBinding Information: 0 : BIND arg [123] to
parameter [x]
DEBUG: ParameterBinding Information: 0 : Executing DATA
GENERATION metadata:
[System.Management.Automation.ArgumentTypeConverterAttribute]
DEBUG: TypeConversion Information: 0 : Converting "123"
to "System.Int32".

And now we see the type conversion messages.

DEBUG: TypeConversion Information: 0 : Original type
 before getting BaseObject: "System.String".
DEBUG: TypeConversion Information: 0 : Original type
 after getting BaseObject: "System.String".
DEBUG: TypeConversion Information: 0 : Standard type
 conversion.
DEBUG: TypeConversion Information: 0 :
Converting integer to System.Enum.
DEBUG: TypeConversion Information: 0 : Type
conversion from string.
DEBUG: TypeConversion Information: 0 :
Converting to integer.
DEBUG: TypeConversion Information: 0 : The
conversion is a standard conversion. No custom type conversion
will be attempted.
DEBUG: ParameterBinding Information: 0 : result returned
 from DATA GENERATION: 123
DEBUG: ParameterBinding Information: 0 : COERCE arg type
[System.Int32] to [System.Int32]
DEBUG: ParameterBinding Information: 0 : Parameter and
arg types the same.
DEBUG: TypeConversion Information: 0 : Converting "123" to
"System.Int32".
DEBUG: TypeConversion Information: 0 : Result type is
assignable from value to convert's type

Finally, the binding process is complete and the script is executed.

DEBUG: ParameterBinding Information: 0 : BIND arg [123] to
param [x] SUCCESSFUL
123
PS (10) >

In summary, the Trace-Command cmdlet provides a mechanism for tracing the exe-
cution of command in PowerShell in a very low-level and detailed way. Sometimes
290 CHAPTER 9 ERRORS, EXCEPTIONS, AND SCRIPT DEBUGGING

this mechanism can be the only way to debug the behavior of a script. It is not, how-
ever, a tool intended for the casual user; it requires considerable sophistication to
interpret the output of these trace logs. For the casual user, the most effective way to
go about it is to use the -FileLog parameter to create a trace log that can then be
analyzed by a developer.

9.6 THE POWERSHELL EVENT LOG

And now, the final topic in this chapter: the last diagnostic tool available in Power-
Shell is the Windows event log. Note that we’re only going to touch on the basics of
this feature area. The point of this section is to make you aware that this feature
exists, and to discuss when and where you might want to use it. For more detailed
information, refer to the PowerShell product documentation.

9.6.1 Examining the event log

When PowerShell is installed, it creates a new event log called “PowerShell”. As Pow-
erShell executes, it writes a variety of information to this log. You can view this infor-
mation using the standard graphical Event Viewer tool provided with Windows, or
you can use the PowerShell Get-EventLog cmdlet. Let’s use the cmdlet to get the
last few records from the PowerShell event log. As always, we can use the tools Power-
Shell provides to filter and scope the data we want to look at. We’ll use an array slice
to get the last five records from the log.

PS (13) > (get-eventlog powershell)[-5..-1]

Index Time Type Source EventID Message
----- ---- ---- ------ ------- -------
 5 Apr 26 19:20 Info PowerShell 600 Provid...
 4 Apr 26 19:20 Info PowerShell 600 Provid...

 3 Apr 26 19:20 Info PowerShell 600 Provid...
 2 Apr 26 19:20 Info PowerShell 600 Provid...
 1 Apr 26 19:20 Info PowerShell 600 Provid...

The default presentation of the event records doesn’t show much information. Let’s
look at one event in detail and see what it contains.

PS (12) > (get-eventlog powershell)[0] | fl *

EventID : 400
MachineName : BRUCEPAY64H
Data : {}
Index : 428

First, we get some basic event log elements common to all event log entries.

Category : Engine Lifecycle
CategoryNumber : 4
THE POWERSHELL EVENT LOG 291

Next, we see the event category. This is not the same as the error category discussed
earlier. PowerShell event log entries are grouped into several large categories.

EntryType : Information
Message : Engine state is changed from None to Available.

Next is the entry type and a message describing the entry. This is followed by a collec-
tion of detail elements, which include things such as the state transition for the
engine, as well as some of the versioning information we saw on the $host object
earlier. This is included in case you have multiple hosts for a particular engine.

 Details:
 NewEngineState=Available
 PreviousEngineState=None

 SequenceNumber=8

 HostName=ConsoleHost
 HostVersion=1.0.10568.0
 HostId=8ac4a201-5d34-4fa7-9d68-bdcc5cb1
 9f45
 EngineVersion=1.0.10568.0
 RunspaceId=ec811562-43da-48d8-9136-7383
 171fbccf

The following fields are only populated when detailed logging is turned on for a Pow-
erShell snap-in (a collection of commands).

 PipelineId=
 CommandName=
 CommandType=
 ScriptName=
 CommandPath=

 CommandLine=
Source : PowerShell

The flowing fields specify the replacement strings that are available. These strings are
substituted into the log message text.

ReplacementStrings : {Available, None, NewEngineState=Availa
 ble
 PreviousEngineState=None

 SequenceNumber=8

 HostName=ConsoleHost
 HostVersion=1.0.10568.0
 HostId=8ac4a201-5d34-4fa7-9d68-bdcc5cb1
 9f45
 EngineVersion=1.0.10568.0
 RunspaceId=ec811562-43da-48d8-9136-7383
 171fbccf
292 CHAPTER 9 ERRORS, EXCEPTIONS, AND SCRIPT DEBUGGING

 PipelineId=
 CommandName=
 CommandType=
 ScriptName=
 CommandPath=
 CommandLine=}

Finally, some additional information for identifying the event log record and when it
occurred.

InstanceId : 400
TimeGenerated : 6/9/2006 10:05:07 PM
TimeWritten : 6/9/2006 10:05:07 PM
UserName :
Site :
Container :

Granted, that was long and boring. As you can see, there isn’t a lot of interesting
information from a user’s perspective. However, from a system administrator’s per-
spective, being able to see when the PowerShell interpreter was started or stopped can
be very useful when you’re using it to automate your system. There are also certain
types of errors that may cause a PowerShell session to terminate. These errors will be
logged in the PowerShell event log.

9.6.2 Exchange 2007 and the PowerShell event log

This chapter concludes by briefly describing the possibility of turning on extended
logging for all the commands present in a PowerShell snap-in. This is useful when
using PowerShell to manage server applications. This feature was added at the request
of the Exchange team for the Microsoft Exchange 2007 mail server product. In
Exchange 2007, all management activities are performed using PowerShell. Even the
Exchange Management console, a graphical user interface for managing Exchange,
uses PowerShell commands for all activities. When extended logging is turned on for
the Exchange snap-in, all Exchange commands (and therefore all management activi-
ties) for an Exchange server are logged.

That’s all we’re going to cover on event logs. For day-to-day user activities, the
event log doesn’t provide a lot of value, but when using PowerShell to perform sys-
tem administration, this log can be invaluable for debugging how and when a system
has been modified.

9.7 SUMMARY

This chapter focused on the diagnostic features of PowerShell: the error handling
mechanisms and the various debugging, tracing, and logging features. And, despite
over 40 pages of text, this was not an exhaustive discussion of all these features (see
Manning’s Windows PowerShell in Practice by Jim Truher for additional information
on this topic). Let’s summarize the areas that we did cover. We started with basic error
handling covering:
SUMMARY 293

• The types of errors in PowerShell: terminating and non-terminating

• The ErrorRecord object and the error stream

• The $error variable and -ErrorVariable parameter

• The $? and $LASTEXITCODE variables

• $ErrorActionPreference and the -ErrorAction parameter

Next, we covered how to work with terminating errors or exceptions:

• The trap statement and how to use it

• Using the throw statement to generate your own terminating exceptions

And then we covered the tools and techniques available for script debugging:

• Old-fashioned “printf-style” debugging using the host APIs

• The debugging features available using the Set-PSdebug cmdlet

• Script tracing

• Strict mode

• Using the nested prompt feature while stepping through a script and also using
it to create “breakpoints”

Finally, we covered the low-level tracing features and logging features.

• Using the Trace-Command cmdlet

• Two types of activities you can trace with this cmdlet

• Getting and examining PowerShell event log entries

A final note: the diagnostic capabilities in PowerShell are rich and deep. This makes it
difficult to get a handle on all of them and how they can be used. The key take-away
from this chapter is to be aware that these capabilities exist, so that when you do
encounter a situation where you need to debug your scripts, you’ll know where to
look for the tools that can help you solve your problem.
294 CHAPTER 9 ERRORS, EXCEPTIONS, AND SCRIPT DEBUGGING

2
P A R T
Using PowerShell
Part 1 covered the PowerShell language and runtime features in great detail; how-
ever, those features were discussed mostly in isolation. In part 2, we shift our focus to
combine the features we learned about in part 1 into larger examples. Now we’ll look
at applying PowerShell in specific technology areas and problem domains.

We begin in chapter 10, looking at how PowerShell can be used to attack the kind
of text processing tasks that have been the traditional domain of languages such as Perl.
In chapter 11, we look at how we can discover and apply the vast capabilities of the
.NET framework from PowerShell. In chapter 12, we’ll look at how to use and apply
other Microsoft object technologies, specifically COM and WMI. We’ll also look at
how to interact with VBScript, Microsoft’s previous-generation scripting tool.

In chapter 13, we’ll introduce the security features in PowerShell along with a gen-
eral discussion of security. This is a very important chapter to read. Like all powerful
scripting tools (Perl, Python, and so forth), PowerShell can be used to create malware
such as virus and worm programs. The PowerShell runtime contains numerous fea-
tures to allow you to deploy it in a manner that minimizes these risks.

The examples in part 2, while larger, are still focused on particular technology
areas, so appendix B includes additional examples of performing system administra-
tion tasks using PowerShell. While it’s by no means a management cookbook, it does
show what can be done with PowerShell and how to do it.

The PowerShell language is the focus of appendix A and appendix C. In appendix
A we compare PowerShell to other languages, looking at issues that Perl, VBScript, and
C# programmers may encounter. Appendix C explains the grammar of the Power-
Shell language.

C H A P T E R 1 0

Processing text,
files, and XML

10.1 Processing unstructured text 298
10.2 File processing 305
10.3 XML processing 322
10.4 Summary 342
Where is human nature so weak as in the bookstore?

 —Henry Ward Beecher

Outside of a dog, a book is man’s best friend. Inside of a dog, it’s too
dark to read.

 —Groucho Marx

One of the most common applications for scripting languages is processing text and
text files. In this chapter, we’re going to cover PowerShell's features for this kind of pro-
cessing. We’ll revisit regular expressions and take another look at the language features
and cmdlets that are provided for dealing with text. This chapter also covers the features
that PowerShell offers for dealing with a special kind of text—XML—as strings and in
files. In the process, we’ll see how to use the .NET classes to accomplish tasks when the
native PowerShell language features may not be sufficient.
297

10.1 PROCESSING UNSTRUCTURED TEXT

While PowerShell is an object-based shell, it still has to deal with text. In chapter 4,
we covered the operators (-match, -replace, -like) that PowerShell provides for
working with text. We showed how to concatenate two strings together using the
plus operator. In this section, we’ll cover some of the more advanced string process-
ing operations. We’ll discuss techniques for splitting and joining strings using the
[string] and [regex] members, and using filters to extract statistical information
from a body of text.

10.1.1 Using System.String to work with text

One common scenario for scripting is processing log files. This requires breaking the
log strings into pieces to extract relevant bits of information. Unfortunately, Power-
Shell has no split operator, so there is no way to split a string into pieces in the lan-
guage itself. This is where our support for .NET is very important. If you want to split
a string into pieces, you use the Split() method on the [string] class.

PS (1) > "Hello there world".Split()
Hello
there
world

The Split() method with no arguments splits on spaces. In this example, it pro-
duces an array of three elements.

PS (2) > "Hello there world".Split().length
3

We can verify this with the length property. In fact, it splits on any of the characters
that fall into the WhiteSpace character class. This includes tabs, so it works properly
on a string containing both tabs and spaces.

PS (3) > "Hello`tthere world".Split()
Hello
there
world

In the revised example, we still get three fields, even though space is used in one place
and tab in another.

And while the default is to split on a whitespace character, you can specify a string
of characters to use split fields.

PS (4) > "First,Second;Third".Split(',;')
First
Second
Third

Here we specified the comma and the semicolon as valid characters to split the field.
298 CHAPTER 10 PROCESSING TEXT, FILES, AND XML

There is, however, an issue; the default behavior for “split this” isn’t necessarily
what you want. The reason why is that it splits on each separator character. This
means that if you have multiple spaces between words in a string, you’ll get multiple
empty elements in the result array. For example:

PS (5) > "Hello there world".Split().length
6

In this example, we end up with six elements in the array because there are three
spaces between “there” and “world”. Let’s find out if there’s a better way to do this.

Using SplitStringOptions

The string method we’ve been using has worked well so far, but we’ve gotten to the
point where we need to add some cmdlets to help us out. In this case, we’ll use the
Get-Member cmdlet to look at the signature of the Split() method:

PS (6) > ("hello" | gm split).definition
System.String[] Split(Params Char[] separator), System.String[]
Split(Char[] separator, Int32 count), System.String[] Split(Char
[] separator, StringSplitOptions options), System.String[] Split
(Char[] separator, Int32 count, StringSplitOptions options), Sys
tem.String[] Split(String[] separator, StringSplitOptions option
s), System.String[] Split(String[] separator, Int32 count, Strin
gSplitOptions options)

The default display of the definition is a little hard to read. Fortunately, we now know
how to split a string.

PS (7) > ("hello" | gm split).definition.split(',')
System.String[] Split(Params Char[] separator)
 System.String[] Split(Char[] separator
 Int32 count)
 System.String[] Split(Char[] separator
 StringSplitOptions options)
 System.String[] Split(Char[] separator
 Int32 count
 StringSplitOptions options)
 System.String[] Split(String[] separator
 StringSplitOptions options)
 System.String[] Split(String[] separator
 Int32 count
 StringSplitOptions options)

It’s not perfect as it split on the method argument commas as well; but we can still read
it. The methods that take the options argument look promising. Let’s see what the
SplitStringOptions are. We’ll do this by trying to cast a string into these options.

PS (8) > [StringSplitOptions] "abc"
Cannot convert value "abc" to type "System.StringSplitOptions" d
ue to invalid enumeration values. Specify one of the following e
PROCESSING UNSTRUCTURED TEXT 299

numeration values and try again. The possible enumeration values
 are "None, RemoveEmptyEntries".
At line:1 char:21
+ [StringSplitOptions] <<<< "abc"

The error message tells us the legitimate values for the enumeration. If we look this
class up in the online documentation on MSDN, we’ll see that this option tells the
Split() method to discard empty array elements. This sounds just like what we
need, so let’s try it:

PS (9) > "Hello there world".split(" ",
>> [StringSplitOptions]::RemoveEmptyEntries)
>>
Hello
there
world

It works as desired. Now we can apply this to a larger problem.

Analyzing word use in a document

Given a body of text, we want to find the number of words in the text as well as the
number of unique words, and then display the 10 most common words in the text.
For our purposes, we’ll use one of the PowerShell help text files: about_Assign-
ment_operators.help.txt. This is not a particularly large file (it’s around 17 kilobytes)
so we can just load it into memory using the Get-Content (gc) cmdlet.

PS (10) > $s = gc $PSHOME/about_Assignment_operators.help.txt
PS (11) > $s.length
434

The variable $s now contains the text of the file as a collection of lines (434 lines, to
be exact.) This is usually what we want, since it lets us process a file one line at time.
But, in this example, we actually want to process this file as a single string. To do so
we’ll use the String.Join() method and join all of the lines, adding an additional
space between each line.

PS (12) > $s = [string]::join(" ", $s)
PS (13) > $s.length
17308

Now $s contains a single string containing the whole text of the file. We verified this
by checking the length rather than displaying it. Next we’ll split it into an array of words.

PS (14) > $words = $s.split(" `t",
>> [stringsplitoptions]::RemoveEmptyEntries)
>>
PS (15) > $words.length
2696
300 CHAPTER 10 PROCESSING TEXT, FILES, AND XML

So the text of the file has 2,696 words in it. We need to find out how many unique
words there are. There are a couple ways of doing this. The easiest way is to use the
Sort-Object cmdlet with the -unique parameter. This will sort the list of words
and then remove all of the duplicates.

PS (16) > $uniq = $words | sort -uniq
PS (17) > $uniq.count
533

This help topic contains 533 unique words. Using the Sort cmdlet is fast and sim-
ple, but it doesn’t cover everything we said we wanted to do, because it doesn’t give
the frequency of use. Let’s look at another approach: using the Foreach-Object
cmdlet and a hashtable.

Using hashtables to count unique words

In the previous example, we used the -unique parameter to Sort-Object to gen-
erate a list of unique words. Now we’ll take advantage of the set-like behavior of hash-
tables to do the same thing, but in addition we will be able to count the number of
occurrences of each word.

In mathematics, a set is simply a collection of unique elements. This is how
the keys work in a hashtable. Each key in a hashtable occurs exactly once.
Attempting to add a key more than once will result in an error. In Power-
Shell, assigning a new value to an existing key simply replaces the old value
associated with that key. The key itself remains unique. This turns out to
be a powerful technique, because it’s a way of building index tables for col-
lections of objects based on arbitrary property values. These index tables let
us run database-like operations on object collections. See section B.9 for an
example of how you can use this technique to implement a SQL-like “join”
operation on two collections of objects.

Once again, we split the document into a stream of words. Each word in the stream
will be used as the hashtable key, and we’ll keep the count of the words in the value.
Here’s the script:

PS (18) > $words | % {$h=@{}} {$h[$_] += 1}

It’s not really much longer than the previous example. We’re using the % alias for
Foreach-Object to keep it short. In the begin clause in Foreach-Object, we’re
initializing the variable $h to hold the resulting hashtable. Then, in the process
scriptblock, we increment the hashtable entry indexed by the word. We’re taking
advantage of the way arithmetic works in PowerShell. If the key doesn’t exist yet, the
hashtable returns $null. When $null is added to a number, it is treated as zero.
This allows the expression

 $h[$_] += 1

AUTHOR’S
NOTE
PROCESSING UNSTRUCTURED TEXT 301

to work. Initially, the hashtable member for a given key doesn’t exist. The += operator
retrieves $null from the table, converts it to 0, adds one, then assigns the value back
to the hashtable entry.

Let’s verify that the script produces the same answer for the number of words as
we found with the Sort -Unique solution.

PS (19) > $h.psbase.keys.count
533

We have 533, the same as before.

Notice that we used $h.psbase.keys.count. This is because there is
a member in the hashtable that hides the keys property. In order to access
the base keys member, we need to use the PSBase property to get at the
base member on the hashtable.

Now we have a hashtable containing the unique words and the number of times each
word is used. But hashtables aren’t stored in any particular order, so we need to sort it.
We’ll use a scriptblock parameter to specify the sorting criteria. We’ll tell it to sort the
list of keys based on the frequency stored in the hashtable entry for that key.

PS (20) > $frequency = $h.psbase.keys | sort {$h[$_]}

The words in the sorted list are ordered from least frequent to most frequent. This
means that $frequency[0] contains the least frequently used word.

PS (21) > $frequency[0]
avoid

And the last entry in frequency contains the most commonly used word. If you
remember from chapter 3, we can use negative indexing to get the last element of
the list.

PS (22) > $frequency[-1]
the

It comes as no surprise that the most frequent word is “the” and it’s used 300 times.

PS (23) > $h["The"]
300

The next most frequent word is “and”, which is used 126 times.

PS (24) > $h[$frequency[-2]]
126
PS (25) > $frequency[-2]
to

Here are the top 10 most frequently used words the about_Assignment_oper-
ators help text:

PS (26) > -1..-10 | %{ $frequency[$_]+" "+$h[$frequency[$_]]}
the 300
to 126

AUTHOR’S
NOTE
302 CHAPTER 10 PROCESSING TEXT, FILES, AND XML

value 88
a 86
you 68
variable 64
of 55
$varA 41
For 41
following 37

PowerShell includes a cmdlet that is also useful for this kind of task: the Group-
Object cmdlet. This cmdlet groups its input objects by into collections sorted by
the specified property. This means that we can achieve the same type of ordering by
the following:

PS (27) > $grouped = $words | group | sort count

Once again, we see that the most frequently used word is “the”:

PS (28) > $grouped[-1]

Count Name Group
----- ---- -----
 300 the {the, the, the, the...}

And we can display the 10 most frequent words by doing:

PS (29) > $grouped[-1..-10]

Count Name Group
----- ---- -----
 300 the {the, the, the, the...}
 126 to {to, to, to, to...}
 88 value {value, value, value, value...}
 86 a {a, a, a, a...}
 68 you {you, You, you, you...}
 64 variable {variable, variable, variable...
 55 of {of, of, of, of...}
 41 $varA {$varA, $varA, $varA, $varA...}
 41 For {For, for, For, For...}
 37 following {following, following, follow...

We create a nicely formatted display courtesy of the formatting and output subsystem
built into PowerShell.

In this section, we saw how to split strings using the methods on the string class.
We even saw how to split strings on a sequence of characters. But in the world of
unstructured text, you’ll quickly run into examples where the methods on [string]
are not enough. As is so often the case, regular expressions come to the rescue. In the
next couple of sections, we’ll see how we can do more sophisticated string processing
using the [regex] class.
PROCESSING UNSTRUCTURED TEXT 303

10.1.2 Using regular expressions to manipulate text

In the previous section, we looked at basic string processing using members on the
[string] class. While there’s a lot of potential with this class, there are times when
you need to use more powerful tools. This is where regular expressions come in. As
we discussed in chapter 4, regular expressions are a mini-language for matching and
manipulating text. We covered a number of examples using regular expressions with
the -match and -replace operators. This time, we’re going to work with the regu-
lar expression class itself.

Splitting strings with regular expressions

As mentioned in chapter 3, there is a shortcut [regex] for the regular expression type.
The [regex] type also has a Split() method, but it’s much more powerful because
it uses a regular expression to decide where to split strings instead of a single character.

PS (1) > $s = "Hello-1-there-22-World!"
PS (2) > [regex]::split($s,'-[0-9]+-')
Hello
there
World!
PS (3) > [regex]::split($s,'-[0-9]+-').count
3

In this example, the fields are separated by a sequence of digits bound on either side
by a dash. This is a pattern that couldn’t be specified with String.Split().

When working with the .NET regular expression library, the [regex] class isn’t
the only class that you’ll run into. We’ll see this in the next example, when we take a
look at using regular expressions to tokenize a string.

Tokenizing text with regular expressions

Tokenization, or the process of breaking a body of text into a stream of individual
symbols, is a common activity in text processing. In chapter 2 we talked a lot about
how the PowerShell interpreter has to tokenize a script before it can be executed. In
the next example, we’re going to look at how we might write a simple tokenizer for
basic arithmetic expressions in a programming language. First we need to define the
valid tokens in these expressions. We want to allow numbers made up of one or more
digits; any of the operators +,-,*, /; and we’ll also allow sequences of spaces. Here’s
what the regular expression to match these elements looks like:

PS (4) > $pat = [regex] "[0-9]+|\+|\-|*|/| +"

This is a pretty simple pattern using only the alternation operator “|” and the quanti-
fier “+”, which matches one or more instances. Since we used the [regex] cast in
the assignment, $pat contains a regular expression object. We can use this object
directly against an input string by calling its Match() operator.

PS (5) > $m = $pat.match("11+2 * 35 -4")
304 CHAPTER 10 PROCESSING TEXT, FILES, AND XML

The Match() operator returns a Match object (full name System.Text.Regular-
Expressions.Match). We can use the Get-Member cmdlet to explore the full set of
members on this object at our leisure, but for now we’re interested in only three mem-
bers. The first member is the Success property. This will be true if the pattern
matched. The second interesting member is the Value member, which will contain
the matched value. The final member we’re interested in is the NextMatch() method.
Calling this method will step the regular expression engine to the next match in the
string, and is the key to tokenizing an entire expression. We can use this method in a
while loop to extract the tokens from the source string one at a time. In the example,
we keep looping as long the Match object’s Success property is true. Then we display
the Value property and call NextMatch() to step to the next token:

PS (6) > while ($m.Success)
>> {
>> $m.value
>> $m = $m.NextMatch()
>> }
>>
11
+
2

*

35

-
4

In the output, we see each token, one per line in the order they appeared in the origi-
nal string.

We now have a powerful collection of techniques for processing strings. The next
step is to apply these techniques to processing files. Of course, we also need to spend
some time finding, reading, writing, and copying files. In the next section, we’ll
review the basic file abstractions in PowerShell and then look at file processing.

10.2 FILE PROCESSING

Let’s step back for a minute and talk about files, drives and navigation. PowerShell
has a provider abstraction that allows the user to work with system data stores as
though they were drives. A provider is a piece of installable software that surfaces a
data store in the form that can be mounted as a “drive”.
FILE PROCESSING 305

By installable, we mean that the end user can install new providers or even
write their own providers. This activity is outside the scope of this book,
however. Refer to the PowerShell user documentation for information on
how to install additional providers. The PowerShell Software Developer’s
Kit includes documentation and examples that can help you write your
own providers.

These drives are a PowerShell “fiction”; that is, they only have meaning to PowerShell
as opposed to system drives that have meaning everywhere. Also, unlike the system
drives, PowerShell drive names can be longer than one character.

We’ve already seen some examples of non-filesystem providers in earlier chapters,
where we worked with the variable: and function: drives. These providers let
you use the New-Item and Remove-Item cmdlets to add and remove variables or
functions just as if they were files.

A key piece to making this provider abstraction is the set of core cmdlets listed in
table 10.1. These cmdlets are the “core” set of commands for manipulating the sys-
tem and correspond to commands found in other shell environments. Because these
commands are used so frequently, short aliases—the canonical aliases—are provided
for the commands. By canonical, we mean that they follow a standard form: usually
the first letter or two of the verb followed by the first letter or two of the noun. Two
additional sets of “user migration” aliases are provided to help new users work with
the system. There is one set for cmd.exe users and one set for UNIX shell users. Note
that these aliases only map the name; they don’t provide exact functional correspon-
dence to either the cmd.exe or UNIX commands.

Table 10.1 The core cmdlets for working with files and directories

Cmdlet

name

Canonica

l alias

cmd

command

UNIX sh

command
Description

Get-Location gl pwd pwd Get the current directory.

Set-Location sl cd, chdir cd, chdir Change the current directory.

Copy-Item cpi copy cp Copy files.

Remove-Item ri del
rd

rm
rmdir

Remove a file or directory. PowerShell has no
separate command for removing directories
as opposed to files.

Move-Item mi move mv Move a file.

Rename-Item rni Rn ren Rename a file.

Set-Item si Set the contents of a file.

Clear-Item cli Clear the contents of a file.

New-Item ni Create a new empty file or directory. The type
of object is controlled by the -type parameter.

continued on next page

AUTHOR’S
NOTE
306 CHAPTER 10 PROCESSING TEXT, FILES, AND XML

On-line help is available for all of these commands; simply type

help cmdlet-name

and you’ll receive detailed help on the cmdlets, their parameters, and some simple
examples of how to use them. In the next few sections, we’ll look at some more
sophisticated applications of these cmdlets, including how to deal with binary data.
In traditional shell environments, binary data either required specialized commands
or forced us to create new executables in a language such as C, because the basic shell
model couldn’t cope with binary data. We’ll see how PowerShell can work directly
with binary data. But first, let’s take a minute to look at the PowerShell drive abstrac-
tion to simplify working with paths.

10.2.1 Working with PSDrives

One useful aspect of the PowerShell provider feature is the ability to create your own
drives. To keep people from mixing up the PowerShell drives with the system drives,
we call these PSDrives. A common reason for creating a PSDrive is to create a short
path for getting at a system resource. For example, it might be convenient to have a
“docs:” drive that points to our document directory. We can create this using the
New-PSDrive cmdlet:

PS (1) > new-psdrive -name docs -PSProvider filesystem `
>> -Root (resolve-path ~/*documents)
>>

Name Provider Root Current
 Location
---- -------- ---- --------
docs FileSystem C:\Documents and Settings\brucep

Now we can cd into this drive

PS (2) > cd docs:

Mkdir md mkdir Mkdir is implemented as a function in Power-
Shell so that users can create directories with-
out having to specify –type directory.

Get-Content gc type cat Send the contents of a file to the output
stream.

Set-Content sc Set the contents of a file. UNIX and cmd.exe
have no equivalent. Redirection is used
instead. The difference between Set-Con-
tent and Out-File is discussed later in this
chapter.

Table 10.1 The core cmdlets for working with files and directories (continued)

Cmdlet

name

Canonica

l alias

cmd

command

UNIX sh

command
Description
FILE PROCESSING 307

then use pwd (an alias for Get-Location) to see where we are:

PS (3) > pwd

Path

docs:\

We are, at least according to PowerShell, in the docs: drive. Let’s create a file here:

PS (4) > "Hello there!" > junk.txt

Next, try to use cmd.exe to display it (we’ll get to why we’re doing this in a second):

PS (5) > cmd /c type junk.txt
Hello there!

Well, that works fine. Display it using Get-Content with the fully qualified path,
including the docs: drive.

PS (6) > get-content docs:/junk.txt
Hello there!

This works as expected. But when we try this with cmd.exe

PS (7) > cmd /c type docs:/junk.txt
The syntax of the command is incorrect.

it fails! This is because non-PowerShell applications don’t understand the PowerShell
drive fiction.

Do you remember the earlier example, where we did a “cd” to the location first,
that it did work? This is because when we’re “in” that drive, the system automatically
sets the current directory properly to the physical path for the child process. This is
why using relative paths from cmd.exe works. However, when we pass in a Power-
Shell path, it fails. There is another workaround for this besides doing a cd. You can
use the Resolve-Path cmdlet to get the ProviderPath. This cmdlet takes the
PowerShell “logical” path and translates it into the provider’s native physical path.
This means that it’s the “real” file system path that non-PowerShell utilities can
understand. We’ll use this to pass the real path to cmd.exe:

PS (7) > cmd /c type (resolve-path docs:/junk.txt).ProviderPath
Hello there!

This time, it works. This is an area where we need to be careful and think about how
things should work with non-PowerShell applications. If we wanted to open a file
with notepad.exe in the doc: directory, we’d have to do the same thing we did for
cmd.exe and resolve the path first:

notepad (resolve-path docs:/junk.txt).ProviderPath
308 CHAPTER 10 PROCESSING TEXT, FILES, AND XML

If you frequently use notepad then you can create a function in your profile:

function notepad {
 $args | %{ notepad.exe (resolve-path $_)/ProviderPath
}

You could even create a function to launch an arbitrary executable:

function run-exe
{
 $cmd, $files = $args
 $cmd = (resolve-path $path).ProviderPath
 $file | %{ & $cmd (resolve-path $_).ProviderPath }
}

This function resolves both the file to edit and the command to run. This means that
you can use a PowerShell drive to map a command path to execute.

10.2.2 Working with paths that contain wildcards

Another great feature of the PowerShell provider infrastructure is universal support
for wildcards (see chapter 4 for details on wildcard patterns). We can use wildcards
any place we can navigate to, even in places such as the alias: drive. For example,
say you want to find all of the aliases that begin with “gc”. You can do this with wild-
cards in the alias provider.

PS (1) > dir alias:gc*

CommandType Name Definition
----------- ---- ----------
Alias gc Get-Content
Alias gci Get-ChildItem
Alias gcm Get-Command

We see that there are three of them.
We might all agree that this is a great feature, but there is a downside. What hap-

pens when you want to access a path that contains one of the wildcard meta-characters:
“?”, “*”, “[” and “]”. In the Windows filesystem, “*” and “?” aren’t a problem because
we can’t use these characters in a file or directory name. But we can use “[” and “]”. In
fact, they are used quite a bit for temporary Internet files. Working with files whose
names contain “[” or “]” can be quite a challenge because of the way wildcards and
quoting (see chapter 3) work. Square brackets are used a lot in filenames in browser
caches to avoid collisions by numbering the files. Let’s run some experiments on some
of the files in the IE cache.

Here’s another tip. By default, the Get-ChildItem cmdlet (and its alias
dir) will not show hidden files. To see the hidden files, use the -Force
parameter. For example, to find the “Application Data” directory in our
home directory, we try

PS (1) > dir ~/app*

AUTHOR’S
NOTE
FILE PROCESSING 309

but nothing is returned. This is because this directory is hidden. To see the
directory, we use -Force as in:

PS (2) > dir ~/app* -Force

 Directory:Microsoft.PowerShell.Core\FileSystem::C:\Docum
 ents and Settings\brucepay

Mode LastWriteTime Length Name
---- ------------- ------ ----
d-rh- 12/14/2006 9:13 PM Application Data

and now the directory is visible. We’ll need to use -force to get into the
directory containing the temporary Internet files.

Suppressing wildcard processing in paths

In one of the directories used to cache temporary Internet files, we want to find all of
the files that begin with “thumb*”. This is easy enough:

PS (2) > dir thumb*

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Doc
 uments and Settings\brucepay\Local Settings\Temporary I
 nternet Files\Content.IE5\MYNBM9OJ

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 9/7/2006 10:34 PM 4201 ThumbnailServe
 r[1].jpg
-a--- 9/7/2006 10:35 PM 3223 ThumbnailServe
 r[2].jpg
-a--- 7/8/2006 7:58 PM 2066 thumb[1].jpg

-a--- 9/11/2006 2:48 PM 12476 thumb[2].txt
-a--- 9/11/2006 2:48 PM 11933 thumb[3].txt

We get five files. Now we want to limit the set of files to things that match “thumb[”.
We try this directly using a wildcard pattern:

PS (3) > dir thumb[*
Get-ChildItem : Cannot retrieve the dynamic parameters for
the cmdlet. The specified wildcard pattern is not valid: th
umb[*
At line:1 char:3
+ ls <<<< thumb[*

Of course, it fails because the “[” is being treated as part of a wildcard pattern. Clearly
we need to suppress treating “[” as a wildcard by escaping it. The obvious first step,
per chapter 4, is to try a single backtick

PS (4) > dir thumb`[*
Get-ChildItem : Cannot retrieve the dynamic parameters for
the cmdlet. The specified wildcard pattern is not valid: th
310 CHAPTER 10 PROCESSING TEXT, FILES, AND XML

umb\[*
At line:1 char:3
+ ls <<<< thumb`[*

This fails because the single backtick is discarded in the parsing process. In fact, it
takes four backticks to cause the square bracket to be treated as a regular character.

PS (5) > dir thumb````[*

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Doc
 uments and Settings\brucepay\Local Settings\Temporary I
 nternet Files\Content.IE5\MYNBM9OJ

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 7/8/2006 7:58 PM 2066 thumb[1].jpg
-a--- 9/11/2006 2:48 PM 12476 thumb[2].txt
-a--- 9/11/2006 2:48 PM 11933 thumb[3].txt

This is because one set of backticks is removed by the interpreter and a second set is
removed by the provider itself. (This second round of backtick removal is so we can
use escaping to represent filenames that contain literal quotes.) Putting single quotes
around the pattern keeps the interpreter from doing escape processing in the string,
simplifying this to only needing two backticks:

PS (8) > ls 'thumb``[*'

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Doc
 uments and Settings\brucepay\Local Settings\Temporary I
 nternet Files\Content.IE5\MYNBM9OJ

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 7/8/2006 7:58 PM 2066 thumb[1].jpg
-a--- 9/11/2006 2:48 PM 12476 thumb[2].txt
-a--- 9/11/2006 2:48 PM 11933 thumb[3].txt

In this particular example, much of the complication arises because we want some of
the meta-characters to be treated as literal characters, while the rest still do pattern
matching. Trial and error is usually the only way to get this right.

As we’ve said previously, this stuff is hard. It’s hard to understand and it’s
hard to get right. But this problem exists in every language that does pattern
matching. Patience, practice, and experimentation are the only ways to fig-
ure it out.

AUTHOR’S
NOTE
FILE PROCESSING 311

The –LiteralPath parameter

We don’t want trial and error when we know the name of the file and want to suppress
all pattern matching behavior. This is accomplished by using the -LiteralPath
parameter available on most core cmdlets. Say we want to copy a file from the previous
example. If we use the regular path mechanism in Copy-Item:

PS (11) > copy thumb[1].jpg c:\temp\junk.jpg
PS (12) > dir c:\temp\junk.jpg
Get-ChildItem : Cannot find path 'C:\temp\junk.jpg' because
 it does not exist.
At line:1 char:4
+ dir <<<< c:\temp\junk.jpg

the copy fails because the square brackets were treated as metacharacters. Now try it
using -LiteralPath.

PS (13) > copy -literalpath thumb[1].jpg c:\temp\junk.jpg
PS (14) > dir c:\temp\junk.jpg

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\temp

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 7/8/2006 7:58 PM 2066 junk.jpg

This time it works properly. When you pipe the output of a cmdlet such as dir into
another cmdlet like Remove-Item, the -LiteralPath parameter is used to couple
the cmdlets so that metacharacters in the paths returned by dir do not cause prob-
lems for Remove-Item. If we want to delete the files we were looking at earlier, we
can use dir to see them:

PS (16) > dir thumb````[*

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Doc
 uments and Settings\brucepay\Local Settings\Temporary I
 nternet Files\Content.IE5\MYNBM9OJ

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 7/8/2006 7:58 PM 2066 thumb[1].jpg
-a--- 9/11/2006 2:48 PM 12476 thumb[2].txt
-a--- 9/11/2006 2:48 PM 11933 thumb[3].txt

Now pipe the output of dir into del:

PS (17) > dir thumb````[* | del

and verify that they have been deleted.

PS (18) > dir thumb````[*

No files are found, so the deletion was successful.
312 CHAPTER 10 PROCESSING TEXT, FILES, AND XML

This essentially covers the issues around working with file paths. From here we
can move on to working with the file contents instead.

10.2.3 Reading and writing files

In PowerShell, files are read using the Get-Content cmdlet. This cmdlet allows
you to work with text files using a variety of character encodings. It also lets you
work efficiently with binary files, as we’ll see in a minute. Writing files is a bit more
complex, because you have to choose between Set-Content and Out-File. The
difference here is whether or not the output goes through the formatting subsystem.
We’ll also explain this later on in this section. One thing to note is that there are no
separate open/read/close or open/write/close steps to working with files. The pipe-
line model allows you to process data and never have to worry about closing file han-
dles—the system takes care of this for you.

Reading files with the Get-Content cmdlet

The Get-Content cmdlet is the primary way to read files in PowerShell. Actually, it’s
the primary way to read any content available through PowerShell drives. Figure 10.1
shows a subset of the parameters available on the cmdlet.
Reading text files is simple. The command

Get-Content myfile.txt

will send the contents of "myfile.txt" to the output stream. Notice that the command
signature for -path allows for an array of path names. This is how you concatenate a
collection of files together. Let’s try this. First we’ll create a bunch of files:

Get-Content [-Path] <String []>
[-ReadCount <Int64>]
[-TotalCount <Int64>]
[-Delimiter <String >]
[-Wait]
[-Encoding <FileSystemCmdletProviderEncoding >]

The cmdlet name

Path to the object to read

The total number of
objects to read

The encoding to use
when reading the

while

A switch parameter –
if specified, the
cmdlet will wait

polling input until
stopped

Line or Record
delimiter

The total number of
objects to read

Figure 10.1 The Get-Content cmdlet parameters
FILE PROCESSING 313

PS (1) > 1..3 | %{ "This is file $_" > "file$_.txt"}
PS (2) > dir

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Temp\fil
 es

Mode LastWriteTime Length Name
---- ------------- ------ ----

-a--- 7/6/2006 8:33 PM 34 file1.txt
-a--- 7/6/2006 8:33 PM 34 file2.txt
-a--- 7/6/2006 8:33 PM 34 file3.txt

And now display their contents:

PS (3) > cat file1.txt,file2.txt,file3txt
This is file 1
This is file 2
This is file 3

or simply

PS (4) > cat *.txt
This is file 1
This is file 2
This is file 3

In this example, the contents of file1.txt, file2.txt, and file3.txt are sent to the output
stream in order. For cmd.exe users, this is equivalent to

copy file1.txt+file2.txt+file3.txt con

Let’s try this in cmd.exe:

C:\Temp\files>copy file1.txt+file2.txt+file3txt con
file1.txt

 T h i s i s f i l e 1
 file2.txt
 h i s i s f i l e 2
 file2.txt
 h i s i s f i l e 3
 1 file(s) copied.

The output looks funny because the files were written in Unicode. You need to tell
the copy command to write in ASCII, and try it again:

C:\Temp\files>copy /a file1.txt+file2.txt+file3.txt con
file1.txt
This is file 1
file2.txt
This is file 2
file2.txt
This is file 3
 1 file(s) copied.
314 CHAPTER 10 PROCESSING TEXT, FILES, AND XML

By default, PowerShell uses Unicode for text, but you can override this. We’ll see how
to do this in the section on writing files. In the meantime, let’s look at how to work
with binary files.

Example: The Get-HexDump function

Let’s look at an example that uses some of these features to deal with non-text files.
We’re going to write a function that can be used to dump out a binary file. We’ll call
this function Get-HexDump. It takes the name of the file to display, the number of
bytes to display per line, and the total number of bytes as parameters. We want the
output of this function to look like the following:

PS (130) > Get-HexDump "$env:windir/Soap Bubbles.bmp" -w 12 -t 100
42 4d ba 01 01 00 00 00 00 00 ba 01 BMº.......º.
00 00 28 00 00 00 00 01 00 00 00 01
00 00 01 00 08 00 00 00 00 00 00 00
01 00 12 0b 00 00 12 0b 00 00 61 00a.
00 00 61 00 00 00 6b 10 10 00 73 10 ..a...k...s.
10 00 73 18 18 00 7b 21 21 00 84 29 ..s.........
29 00 84 31 31 00 6b 08 08 00 8c 39 ...11.k....9
31 00 84 31 29 00 8c 31 31 00 7b 18 1..1...11...
18 00 8c 39 ...9

In this example, we’re using Get-HexDump to dump out the contents of one of the bit-
map files in the Windows installation directory. We’ve specified that it display 12 bytes
per line and stop after the first 100 bytes. The first part of the display is the value of the
byte in hexadecimal, and the portion on the right side is the character equivalent. Only
values that correspond to letters or numbers are displayed. Nonprintable characters are
shown as dots. The code for this function is shown in listing 10.1.

function Get-HexDump ($path = $(throw "path must be specified"),
$width=10, $total=-1)

{
 $OFS=""
 Get-Content -Encoding byte $path -ReadCount $width `
 -totalcount $total | %{
 $record = $_
 if (($record -eq 0).count -ne $width)
 {
 $hex = $record | %{
 " " + ("{0:x}" -f $_).PadLeft(2,"0")}
 $char = $record | %{
 if ([char]::IsLetterOrDigit($_))
 { [char] $_ } else { "." }}
 "$hex $char"
 }
 }
}

Listing 10.1 Get-HexDump

Set $OFS
to empty

B

Read the fileC

Skip record if
length is zeroD

E Format data

Emit formatted
outputF
FILE PROCESSING 315

As required, the function takes a mandatory path parameter and optional parameters
for the number of bytes per line and the total number of bytes to display. We’re going
to be converting arrays to strings and we don’t want any spaces added, so we’ll set the
output field separator character to be empty.

The Get-Content cmdlet does all of the hard work. It reads the file in binary
mode (indicated by setting encoding to byte), reads up to a maximum of -TotalCount
bytes, and writes them into the pipeline in records of length specified by -ReadCount.
The first thing we do in the foreach scriptblock is save the record that was passed in,
because we’ll be using nested pipelines that will cause $_ to be overwritten.

If the record is all zeros , we’re not going to bother displaying it. It might be a
better design to make this optional, but we’ll leave it as is for this example. For dis-
play purposes, we’re converting the record of bytes into two-digit hexadecimal
numbers. We use the format operator to format the string in hexadecimal and then
the PadLeft() method on strings to pad it out to two characters. Finally, we prefix
the whole thing with a space. The variable $hex ends up with a collection of these
formatted strings.

Now we need to build the character equivalent of the record. We’ll use the meth-
ods on the [char] class to decide whether we should display the character or a “.”.
Notice that even when we’re displaying the character, we’re still casting it into a
[char]. This is needed because the record contains a byte value which, if directly
converted into a string, will be a formatted as a number instead of as a character.
Finally, we’ll output the completed record, taking advantage of string expansion to
build the output string (which is why we set $OFS to “”).

This example illustrates the basic technique for getting at the binary data in a file.
The technique has a variety of applications beyond simply displaying binary data, of
course. Once you reach the data, you can determine a variety of characteristics about
the content of that file. In the next section, we’ll take a look at an example and exam-
ine the content of a binary file to double-check on the type of that file.

Example: The Get-MagicNumber function

If you looked closely at the output from the .BMP file earlier, you might have noticed
that the first two characters in the file were BP. In fact, the first few bytes in a file are
often used as a “magic number” that identifies the type of the file. We’ll write a short
function Get-MagicNumber that displays the first four bytes of a file so we can
investigate these magic numbers. Here’s what we want the output to look like. First
we’ll try this on a .BMP file

PS (1) > get-magicnumber $env:windir/Zapotec.bmp
424d 3225 'BM2.'

and then on an .EXE.

PS (2) > get-magicnumber $env:windir/explorer.exe
4d5a 9000 'MZ..'
PS (3) >

B
C

D

E

F

316 CHAPTER 10 PROCESSING TEXT, FILES, AND XML

This utility dumps the header bytes of the executable. The first two bytes identify this
file as an MS-DOS executable.

Trivia time: As you can see, the ASCII representation of the header bytes
(0x5A4D) is MZ. These are the initials of Mark Zbikowski, one of the orig-
inal architects of MS-DOS.

The code for Get-MagicNumber is shown in listing 10.2.

function Get-MagicNumber ($path)
{
 $OFS=""
 $mn = Get-Content -encoding byte $path -read 4 -total 4
 $hex1 = ("{0:x}" -f ($mn[0]*256+$mn[1])).PadLeft(4, "0")
 $hex2 = ("{0:x}" -f ($mn[2]*256+$mn[3])).PadLeft(4, "0")
 [string] $chars = $mn| %{ if ([char]::IsLetterOrDigit($_))
 { [char] $_ } else { "." }}
 "{0} {1} '{2}'" -f $hex1, $hex2, $chars
}

There’s not much that’s new in this function. Again, we set the output field separator
string to be empty . We extract the first four bytes as two pairs of numbers format-
ted in hex and also as characters if they correspond to printable characters.
Finally, we format the output as desired.

From these examples, we see that Get-Content allows us to explore any type of
file on a system, not just text files. For now, though, let’s return to text files and look
at another parameter on Get-Content: -Delimiter. When reading a text file, the
default line delimiter is the newline character.

Actually, the end-of-line sequence on Windows is generally a two-character
sequence: carriage return followed by newline. The .NET I/O routines hide
this detail and let us just pretend it’s a newline. In fact, the runtime will
treat newline by itself, carriage return by itself, and the carriage return/new-
line sequence all as end-of-line sequences.

This parameter lets you change that. With this new knowledge, let’s return to the
word-counting problem we had earlier. If we set the delimiter to be the space charac-
ter instead of a newline, we can split the file as we read it. Let’s use this in an example.

get-content about_Assignment_operators.help.txt `
 -delimiter " " |
 foreach { $_ -replace "[^\w]+"} |
 where { $_ -notmatch "^[`t]*`$"} |
 group |
 sort -descending count |
 select -first 10 |
 ft -auto name, count

AUTHOR’S
NOTE

Listing 10.2 Get-MagicNumber

Set $OFS to
empty string

B

Format
as hex

C

Format
as charD

Emit
outputE

B
C D

E

AUTHOR’S
NOTE
FILE PROCESSING 317

In this example, the -delimiter parameter is used to split the file on space bound-
aries instead of newlines. We’re using the same group, sort, and format operations as
before; however, this time we’re sorting in descending order so we can use the
Select-Object cmdlet instead of array indexing to extract the top 10 words. We’re
also doing more sophisticated filtering. We’re using a foreach filter to get rid of the
characters that aren’t legal in a word. This is accomplished with the -replace oper-
ator and the regular expression “[^\w]+”. The \w pattern is a meta-character that
matches any legal character in a word. Putting it in the square brackets prefixed with
the caret says it should match any character that isn’t valid in a word. The where fil-
ter is used to discard any empty lines that may be in the text or may have been created
by the foreach filter.

At this point, we have a pretty good handle on reading files and processing their
contents. It’s time to look at the various ways to write files.

Writing files

There are two major ways to write files in PowerShell—by setting file content with
the Set-Content cmdlet and by writing files using the Out-File cmdlet. The big
difference is that Out-File, like all of the output cmdlets, will try to format the out-
put. Set-Content, on the other hand, will simply write the output. If its input
objects aren’t already strings, it will convert them to strings by calling the
.ToString() method. This is not usually what you want for objects, but it’s exactly
what you want if your data is already formatted or if you’re working with binary data.

The other thing you need to be concerned with is how the files are encoded when
they’re written. In an earlier example, we saw that, by default, text files are written in
Unicode. Let’s rerun this example, changing the encoding to ASCII instead.

PS (48) > 1..3 | %{ "This is file $_" |
>> set-content -encoding ascii file$_.txt }
>>

The -encoding parameter is used to set how the files will be written. In this exam-
ple, the files are written using ASCII encoding. Now let’s rerun the cmd.exe copy
example that didn’t work earlier.

PS (49) > cmd /c copy file1.txt+file2.txt+file3.txt con
file1.txt
This is file 1
file2.txt
This is file 2
file3.txt
This is file 3
 1 file(s) copied.

This time it works fine, because the encoding matches what cmd.exe expected. In
the next section, we’ll look at using -encoding to write binary files.
318 CHAPTER 10 PROCESSING TEXT, FILES, AND XML

All together now—Reading and writing

Our next topic of interest is combining reading and writing binary files. First we’ll set
up paths to two files: a source bitmap file:

$src = "$env:windir/Soap Bubbles.bmp"

and a destination in a temporary file.

$dest = "$env:temp/new_bitmap.bmp"

Now we’ll copy the contents from one file to the other:

get-content -encoding byte -read 10kb $src |
 set-content -encoding byte $dest

Now let’s define a (not very good) checksum function that simply adds up all of the
bytes in the file.

function Get-CheckSum ($path)
{
 $sum=0
 get-content -encoding byte -read 10kb $path | %{
 foreach ($byte in $_) { $sum += $byte }
 }
 $sum
}

We’ll use this function to verify that the file we copied is the same as the original file
(note that this is a fairly slow function and takes a while to run).

PS (5) > Get-CheckSum $src
268589
PS (6) > Get-CheckSum $dest
268589

The numbers come out the same, so we have some confidence that the copied file
matches the original.

10.2.4 Searching files with the Select-String cmdlet

Another place where regular expressions are used is in the Select-String cmdlet.
This cmdlet allows you to search through collections of strings or collections of files.
It’s similar to the grep command on UNIX-derived systems and the findstr com-
mand on Windows. Figure 10.2 shows a subset of the parameters on this cmdlet.

We might ask why this cmdlet is needed—doesn’t the base language do every-
thing it does? The answer is yes, but searching through files is such a common opera-
tion that having a cmdlet optimized for this purpose makes sense. Let’s look at some
examples. First, we’re going to search through all of the “about_*” topics in the Pow-
erShell installation directory to see if the phrase “wildcard description” is there.
FILE PROCESSING 319

PS (1) > select-string "wildcard description" $pshome/about*.txt

about_Wildcard.help.txt:36: Wildcard Description Examp
le Match No match

We see that there is exactly one match, but notice the uppercase letters in the match-
ing string. Let’s rerun the search using the -CaseSensitive parameter.

PS (2) > select-string -case "wildcard description" `
>> $pshome/about*.txt
>>

This time nothing was found. If we alter the case in the pattern then it works again.

PS (3) > select-string -case "Wildcard Description" `
>> $pshome/about*.txt
>>

about_Wildcard.help.txt:36: Wildcard Description Examp
le Match No match

Now let’s try out the -list parameter. Normally Select-String will find all
matches in a file. The -list switch limits the search to only the first match in a file:

PS (4) > select-string -list wildcard $pshome/about*.txt

about_Comparison_operators.help.txt:28: -like wildcard
 comparison "one" -like "o*" true
about_Filter.help.txt:60: -like A comparison operator t
hat supports wildcard matching
about_Globbing.help.txt:5: See Wildcard
about_operator.help.txt:71: -like Wildcard comp
arison (case insensitive)

Select -String [-Pattern] <String []>
-InputObject <PSObject >
[-Path] <String []>
[-SimpleMatch]
[-CaseSensitive]
[-Quiet]
[-List]

The cmdlet name

Pattern to search for

If specified,
searching is done
case-sensitively

Return a boolean
indicating that a
match occuredOnly return the first

matching object

Use a simple
string match
instead of a

regular
expression when

searching

What to search –
files or strings, only

one of these can
parameters can be

specified

Figure 10.2 The Select-String cmdlet parameters
320 CHAPTER 10 PROCESSING TEXT, FILES, AND XML

about_Parameter.help.txt:62: Wildcards are allowed but th
ey must resolve to a single name.
about_switch.help.txt:63: switch [-regex|-wildcard|-exact
][-casesensitive] (pipeline)
about_where.help.txt:55: -like compare strings using w
ildcard rules
about_Wildcard.help.txt:2: Wildcards

In the result, we see exactly one match per file. Now let’s try using the -quiet switch.

PS (5) > select-string -quiet wildcard $pshome/about*.txt
True

This switch returns true if any of the files contained a match and false if none of them
did. We can also combine the two switches so that the cmdlet returns the first match
in the set of files.

PS (6) > select-string -quiet -list wildcard $pshome/about*.txt

about_Comparison_operators.help.txt:28: -like wildcard
 comparison "one" -like "o*" true

If you want to search a more complex set of files, you can pipe the output of Get-
Childitem (dir) into the cmdlet and it will search all of these files. Let’s search all
of the log files in system32 subdirectory.

PS (7) > dir -rec -filter *.log $env:windir\system32 |
>> select-string -list fail | ft path
>>

Path

C:\WINDOWS\system32\CCM\Logs\ScanWrapper.LOG
C:\WINDOWS\system32\CCM\Logs\UpdateScan.log
C:\WINDOWS\system32\CCM\Logs\packages\RMSSP1_Client_RTW.log
C:\WINDOWS\system32\CCM\Logs\packages\RMSSP1_Client_RTW_BC_In...
C:\WINDOWS\system32\wbem\Logs\wbemcore.log
C:\WINDOWS\system32\wbem\Logs\wbemess.log
C:\WINDOWS\system32\wbem\Logs\wmiadap.log
C:\WINDOWS\system32\wbem\Logs\wmiprov.log

Notice that we’re only displaying the path. The output of Select-String is
objects, as shown:

PS (8) > select-string wildcard $pshome/about*.txt |
>> gm -type property
>>

 TypeName: Microsoft.PowerShell.Commands.MatchInfo

Name MemberType Definition
---- ---------- ----------
Filename Property System.String Filename {get;}
IgnoreCase Property System.Boolean IgnoreCase {get;set;}
FILE PROCESSING 321

Line Property System.String Line {get;set;}
LineNumber Property System.Int32 LineNumber {get;set;}
Path Property System.String Path {get;set;}
Pattern Property System.String Pattern {get;set;}

You can select as much or as little information from these objects as you want.
All of the text we’ve been working with so far has been unstructured text where

there is no rigorously defined layout for that text. As a consequence, we’ve had to work
fairly hard to extract the information we want out of this text. There are, however,
large bodies of structured text, where the format is well-defined in the form of XML
documents. In the next section, we’ll look at how to work with XML in PowerShell.

10.3 XML PROCESSING

XML (Extensible Markup Language) is becoming more and more important in the
computing world. XML is being used for everything from configuration files to log
files to databases. PowerShell itself uses XML for its type and configuration files as
well as for the help files. Clearly, for PowerShell to be effective, it has to be able to
process XML documents effectively. Let’s take a look at how XML is used and sup-
ported in PowerShell.

This section assumes some basic knowledge of XML markup.

We’ll look at the XML object type, as well as the mechanism that .NET provides for
searching XML documents.

10.3.1 Using XML as objects

PowerShell supports XML documents as a primitive data type. This means that you
can access the elements of an XML document as though they were properties on an
object. For example, we create a simple XML object. We’ll start with a string that
defines a top-level node called “top”. This node contains three descendants “a”, “b”,
and “c”, each of which has a value. Let’s turn this string into an object:

PS (1) > $d = [xml] "<top><a>onetwo<c>3</c></top>"

The [xml] cast takes the string and converts it into an XML object of type Sys-
tem.XML.XmlDocument. This object is then adapted by PowerShell so you can treat
it like a regular object. Let’s try this out. First we’ll display the object:

PS (2) > $d

top

top

As we expect, the object displays one top-level property corresponding to the top-
level node in the document. Now let’s see what properties this node contains:

AUTHOR’S
NOTE
322 CHAPTER 10 PROCESSING TEXT, FILES, AND XML

PS (3) > $d.a
PS (4) > $d.top

a b c
- - -
one two 3

There are three properties that correspond to the descendents of top. We can use
conventional property notation to look at the value of an individual member:

PS (5) > $d.top.a
One

We can then change the value of this node. It’s as simple as assigning a new value to
the node. Let’s assign the string “Four” to the node “a”:

PS (6) > $d.top.a = "Four"
PS (7) > $d.top.a
Four

We can see that it’s been changed. But there is a limitation: we can only use an actual
string as the node value. The XML object adapter won’t automatically convert non-
string objects to strings in an assignment, so we get an error when we try it, as seen in
the following:

PS (8) > $d.top.a = 4
Cannot set "a" because only strings can be used as values to
set XmlNode properties.
At line:1 char:8
+ $d.top.a <<<< = 4

All of the normal type conversions apply, of course. The node c contains a string
value that is a number.

PS (8) > $d.top.c.gettype().FullName
System.String

We can add this field to an integer, which will cause it to be converted into an integer.

PS (9) > 2 + $d.top.c
5

Since we can’t simply assign to elements in an XML document, we’ll dig a little deeper
into the [xml] object and see how we can add elements.

Adding elements to an XML object

Let’s add an element “d” to this document. To do this, we need to use the methods on
the XML document object. First we have to create the new element:

PS (10) > $el= $d.CreateElement("d")

In text, what we’ve created looks like “<d></d>”. The tags are there, but they’re
empty. Let’s set the element text, the “inner text”:
XML PROCESSING 323

PS (11) > $el.set_InnerText("Hello")

#text

Hello

Notice that we’re using the property setter method here. This is because the XML
adapter hides the basic properties on the XmlNode object. The other way to set this
would be to use the PSBase member like we did with the hashtable example earlier
in this chapter.

PS (12) > $ne = $d.CreateElement("e")
PS (13) > $ne.psbase.InnerText = "World"
PS (14) > $d.top.AppendChild($ne)

#text

World

Take a look at the revised object.

PS (15) > $d.top

a : one
b : two
c : 3
d : Hello
e : World

We see that the document now has five members instead of the original three. But
what does the string look like now? It would be great if we could simply cast the doc-
ument back to a string and see what it looks like:

PS (16) > [string] $d

System.Xml.XmlDocument

Unfortunately, as you can see, it isn’t that simple. Instead, we’ll save the document as
a file and display it:

PS (17) > $d.save("c:\temp\new.xml")
PS (18) > type c:\temp\new.xml
<top>
 <a>one
 two
 <c>3</c>
 <d>Hello</d>
 <e>World</e>
</top>

The result is a nicely readable text file. Now that we know how to add children to a
node, how can we add attributes? The pattern is basically the same as with elements.
First we create an attribute object.
324 CHAPTER 10 PROCESSING TEXT, FILES, AND XML

PS (19) > $attr = $d.CreateAttribute("BuiltBy")

Next we set the value of the text for that object. Again we use the PSBase member to
bypass the adaptation layer.

PS (20) > $attr.psbase.Value = "Windows PowerShell"

And finally we add it to the top-level document.

PS (21) > $d.psbase.DocumentElement.SetAttributeNode($attr)

#text

Windows PowerShell

Let’s look at the top node once again.

PS (22) > $d.top

BuiltBy : Windows PowerShell
a : one
b : two
c : 3
d : Hello
e : World

We see that the attribute has been added.

While PowerShell’s XML support is good, there are some issues. The first
release of PowerShell has a bug, where trying to display an XML node that
has multiple children with the same name causes an error to be generated
by the formatter. For example, the statement

[xml]$x = "<root><item>1</item><item>2</item></root>"
 $x.root

will result in an error. This can be disconcerting when you are trying to ex-
plore a document. By doing

[xml]$x = "<root><item>1</item><item>2</item></root>" ;
 $x.root.item

instead, you’ll be able to see the elements without error. Also, for experi-
enced .NET XML and XPath users, there are times when the XML adapter
hides properties on an XmlDocument or XmlNode object that the .NET
programmer expects to find. In these scenarios, the .PSBase property is
the workaround that lets you access the raw .NET object. Finally, some
XPath users may get confused by PowerShell’s use of the property operator
“.” to navigate an XML document. XPath uses / instead. Despite these is-
sues, for the nonexpert user or for “quick and dirty” scenarios, the XML
adapter provides significant benefit in terms of reducing the complexity of
working with XML.

AUTHOR’S
NOTE
XML PROCESSING 325

It’s time to save the document:

PS (23) > $d.save("c:\temp\new.xml")

Then retrieve the file. You can see how the attribute has been added to the top node
in the document.

PS (24) > type c:\temp\new.xml
<top BuiltBy="Windows PowerShell">

 <a>one
 two
 <c>3</c>
 <d>Hello</d>
</top>
PS (25) >

We constructed, edited, and saved XML documents, but we haven’t loaded an existing
document yet, so that’s the next step.

10.3.2 Loading and saving XML files.

At the end of the previous section, we saved an XML document to a file. If we read it
back:

PS (1) > $nd = [xml] [string]::join("`n",
>> (gc –read 10kb c:\temp\new.xml))
>>

Here’s what we’re doing. We use the Get-Content cmdlet to read the file; however,
it comes back as a collection of strings when what we really want is one single string.
To do this, we use the [string]::Join() method. Once we have the single string,
we cast the whole thing into an XML document.

Here’s a performance tip. By default, Get-Content reads one record at
a time. This can be quite slow. When processing large files, you should
use the -ReadCount parameter to specify a block size of -1. This will
cause the entire file to be loaded and processed at once, which is much
faster. Alternatively, here’s another way to load an XML document using
the .NET methods:

($nd = [xml]"<root></root>").Load("C:\temp\new.xml")

Note that this does require that the full path to the file be specified..

Let’s verify that the document was read properly by dumping out the top-level node
and then the child nodes.

PS (2) > $nd

top

top

AUTHOR’S
NOTE
326 CHAPTER 10 PROCESSING TEXT, FILES, AND XML

PS (3) > $nd.top

BuiltBy : Windows PowerShell
a : one
b : two
c : 3
d : Hello

All is as it should be. Even the attribute is there.
While this is a simple approach and the one we’ll use most often, it’s not necessar-

ily the most efficient approach because it requires loading the entire document into
memory. For very large documents or collections of many documents, this may
become a problem. In the next section, we’ll look at some alternative approaches that,
while more complex, are more memory-efficient.

Example: The dump-doc function

The previous method we looked at for loading an XML file is very simple, but not
very efficient. It requires that you load the file into memory, make a copy of the file
while turning it into a single string, and create an XML document representing the
entire file but with all of the overhead of the XML DOM format. A much more space-
efficient way to process XML documents is to use the XML reader class. This class
streams through the document one element at a time instead of loading the whole
thing into memory. We’re going to write a function that will use the XML reader to
stream through a document and output it properly indented. An XML pretty-printer,
if you will. Here’s what we want the output of this function to look like when it
dumps its built-in default document:

PS (1) > dump-doc
<top BuiltBy = "Windows PowerShell">

 <a>
 one

 two

 <c>
 3
 </c>
 <d>
 Hello
 </d>
</top>

Now let’s test our function on a more complex document where there are more
attributes and more nesting. Listing 10.3 shows how to create this document.
XML PROCESSING 327

@'
<top BuiltBy = "Windows PowerShell">

 one

 <b pronounced="bee">
 two

 <c one="1" two="2" three="3">
 <one>
 1
 </one>
 <two>
 2
 </two>
 <three>
 3
 </three>
 </c>
 <d>
 Hello there world
 </d>
</top>
'@ > c:\temp\fancy.xml

When we run the function, we see

PS (2) > dump-doc c:\temp\fancy.xml
<top BuiltBy = "Windows PowerShell">

 one

 <b pronounced = "bee">
 two

 <c one = "1"two = "2"three = "3">
 <one>
 1
 </one>
 <two>
 2
 </two>
 <three>
 3
 </three>
 </c>
 <d>
 Hello there world
 </d>
</top>

Listing 10.3 Creating the text XML document
328 CHAPTER 10 PROCESSING TEXT, FILES, AND XML

which is pretty close to the original document. The code for the Dump-Doc function
is shown in listing 10.4.

function Dump-Doc ($doc="c:\temp\new.xml")
{
 $settings = new-object System.Xml.XmlReaderSettings
 $doc = (resolve-path $doc).ProviderPath
 $reader = [xml.xmlreader]::create($doc, $settings)
 $indent=0
 function indent ($s) { " "*$indent+$s }
 while ($reader.Read())
 {
 if ($reader.NodeType -eq [Xml.XmlNodeType]::Element)
 {
 $close = $(if ($reader.IsEmptyElement) { "/>" } else { ">" })
 if ($reader.HasAttributes)
 {
 $s = indent "<$($reader.Name) "
 [void] $reader.MoveToFirstAttribute()
 do
 {
 $s += "$($reader.Name) = `"$($reader.Value)`""
 }
 while ($reader.MoveToNextAttribute())
 "sclose" }
 else
 {
 indent "<$($reader.Name)$close"
 }
 if ($close -ne '/>') {$indent++}
 }

 elseif ($reader.NodeType -eq [Xml.XmlNodeType]::EndElement)
 {
 $indent--
 indent "</$($reader.Name)>"
 }
 elseif ($reader.NodeType -eq [Xml.XmlNodeType]::Text)
 {
 indent $reader.Value
 }
 }
 $reader.close()
}

This is a complex function, so it’s worthwhile to take it one piece at a time. We start
with the basic function declaration, where it takes an optional argument that names a
file. Next we’ll create the settings object we need to pass in when we create the
XML reader object. We also need to resolve the path to the document, because the

Listing 10.4 Dump-Doc

Create the
settings object

B

Create the
XML reader

C

Define format-
ting function D

Process
element
nodes

E

Process
attributesF

GMove through
attributes

Increase
indent level

H

Decrease
indent level

I

Format text
elementJ

1) Close reader
object

B

XML PROCESSING 329

XML reader object requires an absolute path (see chapter 11 for an explanation of
why this is). Now we can create the XmlReader object itself. The XML reader will
stream through the document, reading only as much as it needs, as opposed to read-
ing the entire document into memory.

We want to display the levels of the document indented, so we’ll initialize an
indent level counter and a local function to display the indented string. Now we’ll
read through all of the nodes in the document. We’ll choose different behavior based
on the type of the node. An element node is the beginning of an XML element. If
the element has attributes then we’ll add them to the string to display. We’ll use
the MoveToFirstAttribute()/MoveToNextAttribute() methods to move
through the attributes. (Note that this pattern parallels the enumerator pattern we
saw in chapter 5 with the $foreach and $switch enumerators.) If there are no
attributes, just display the element name. At each new element, increase the
indent level if it’s not an empty element tag. If it’s the end of an element, decrease the
indent level and display the closing tag . If it’s a text element, just display the value
of the element . Finally, close the reader . We always want to close a handle
received from a .NET method. It will eventually be discarded during garbage collec-
tion, but it’s possible to run out of handles before you run out of memory.

This example illustrates the basic techniques for using an XML reader object to
walk through an arbitrary document. In the next section, we’ll look at a more special-
ized application.

Example: The Select-Help function

Now let’s work with something a little more useful. The PowerShell help files are
stored as XML documents. We want to write a function that scans through the com-
mand file, searching for a particular word in either the command name or the short
help description. Here’s what we want the output to look like:

PS (1) > select-help property
Clear-ItemProperty: Removes the property value from a property.
Copy-ItemProperty: Copies a property between locations or namesp
aces.
Get-ItemProperty: Retrieves the properties of an object.
Move-ItemProperty: Moves a property from one location to another
.
New-ItemProperty: Sets a new property of an item at a location.
Remove-ItemProperty: Removes a property and its value from the l
ocation.
Rename-ItemProperty: Renames a property of an item.
Set-ItemProperty: Sets a property at the specified location to a
 specified value.
PS (2) >

In the example, we’re searching for the word property and we find a list of all of the
cmdlets that work with properties. The output is a string containing the property

C

D

E
F

G

H

I
J 1)
330 CHAPTER 10 PROCESSING TEXT, FILES, AND XML

name and a description string. Next let’s look at a fragment of document we’re going
to process:

 <command:details>
 <command:name>
 Add-Content
 </command:name>
 <maml:description>
 <maml:para>
 Adds to the content(s) of the specified item(s)
 </maml:para>
 </maml:description>
 <maml:copyright>
 <maml:para></maml:para>
 </maml:copyright>
 <command:verb>add</command:verb>
 <command:noun>content</command:noun>
 <dev:version></dev:version>
 </command:details>

PowerShell help text is stored in MAML (Microsoft Assistance Markup Language)
format. From simple examination of the fragment, we can see that the name of a
command is stored in the command:name element and the description is stored in a
maml:description element inside a maml:para element. The basic approach
we’ll use is to look for the command tag, extract and save the command name, and
then capture the description in the description element that immediately follows the
command name element. This means that we’ll use a state-machine pattern to pro-
cess the document. A state machine usually implies using the switch statement, so
this example is also a good opportunity to use the control structures in the PowerShell
language a bit more. The function is shown in listing 10.5.

function Select-Help ($pat = ".")
{
 $cmdHlp="Microsoft.PowerShell.Commands.Management.dll-Help.xml"
 $doc = "$PSHOME\$cmdHlp"

 $settings = new-object System.Xml.XmlReaderSettings
 $settings.ProhibitDTD = $false
 $reader = [xml.xmlreader]::create($doc, $settings)

 $name = $null
 $capture_name = $false
 $capture_description = $false
 $finish_line = $false

 while ($reader.Read())
 {
 switch ($reader.NodeType)

Listing 10.5 Select-Help

Declare functionB

Set up
pathsC

Set up XMl
readerD

E Initialize
variables
XML PROCESSING 331

 {
 ([Xml.XmlNodeType]::Element) {
 switch ($reader.Name)
 {
 "command:name" {
 $capture_name = $true
 break
 }

 "maml:description" {
 $capture_description = $true
 break
 }
 "maml:para" {
 if ($capture_description)
 {
 $finish_line = $true;
 }
 }
 }
 break
 }
 ([Xml.XmlNodeType]::EndElement) {
 if ($capture_name) { $capture_name = $false }
 if ($finish_description)
 {
 $finish_line = $false
 $capture_description = $false
 }
 break
 }
 ([Xml.XmlNodeType]::Text) {
 if ($capture_name)
 {
 $name = $reader.Value.Trim()
 }
 elseif ($finish_line -and $name)
 {
 $msg = $name + ": " + $reader.Value.Trim()
 if ($msg -match $pat)
 {
 $msg
 }
 $name = $null
 }
 break
 }
 }
 }
 $reader.close()
}

Process
element

F

Process
command:name

G

Process
maml:description

H

Process
maml:para

I

Process
end element

J

1) Process
captured name

1!
Trim name
string

1@
Check against
pattern

1# Close XML
reader
332 CHAPTER 10 PROCESSING TEXT, FILES, AND XML

Once again, this is a long piece of code, so we’ll walk through it a piece at a time. The
$pat parameter will contain the pattern to search for. If no argument is supplied
then the default argument will match everything. Next, we set up the name of the
document to search in the PowerShell installation directory. Then we create the
XmlReader object as in the previous examples.

Since we’re using a state machine, we need to set up some state variables. The
$name variable will be used to hold the name of the cmdlet and the others will hold
the state of the processing. We’ll read through the document one node at a time and
switch on the node type. Unrecognized node types are just ignored.

First, we’ll process the Element nodes. We’ll use a nested switch statement to
perform different actions based on the type of element. Finding a command:name ele-
ment starts the matching process. When we see a maml:description element ,
we’re capturing the beginning of a MAML description field, so we indicate that we want
to capture the description. When we see the maml:para element, we need to handle
the embedded paragraph in the description element. In the end tag of an element,
we’ll reset some of the state variables if they’ve been set. And finally, we need to extract
the information we’re interested in out of the element. We’ve captured the cmdlet
name of the element, but we want to remove any leading and trailing spaces, so we’ll
use the [string] Trim() method. Now we have both the cmdlet name and the
description string. If it matches the pattern the caller specified , output it. Again, the
last thing to do is to close the XML reader so we don’t waste resources.

But where are the pipelines, we ask? Neither of these last two examples has taken
advantage of PowerShell’s pipelining capability. In the next section, we’ll remedy this
omission.

10.3.3 Processing XML documents in a pipeline

Pipelining is one of the signature characteristics of shell environments in general, and
PowerShell in particular. Since the previous examples did not take advantage of this
feature, we’ll look at how it can be applied now. We’re going to write a function that
scans all of the PowerShell help files, both the text about topics and the XML files. For
example, let’s search for all of the help topics that mention the word “scriptblock”.

PS (1) > search-help scriptblock
about_Display
about_Types
Get-Process
Group-Object
Measure-Command
Select-Object
Trace-Command
ForEach-Object
Where-Object

This tool provides a simple, fast way to search for all of the help topics that contain a
particular pattern. The source for the function is shown in listing 10.6.

B

C
D

E

F

G H

I
J

1)
1!

1@
1#
XML PROCESSING 333

function Search-Help
{
 param ($pattern = $(throw "you must specify a pattern"))

 select-string -list $pattern $PSHome\about*.txt |
 %{$_.filename -replace '\..*$'}

 dir $PShome*dll-help.*xml |
 %{ [xml] (get-content -read -1 $_) } |
 %{$_.helpitems.command} |
 ? {$_.get_Innertext() -match $pattern} |
 %{$_.details.name.trim()}
}

This function takes one parameter to use as the pattern for which we are searching.
We’re using the throw keyword described in chapter 9 to generate an error if the
parameter was not provided.

First, we search all of the text files in the PowerShell installation directory and
return one line for each matching file . Then we pipe this line into Foreach-
Object (or its alias % in this case) to extract the base name of the file using the
replace operator and a regular expression. This will list the file names in the form
that you can type back into Get-Help.

Then get a list of the XML help files and turn each file into an XML object. We
specify a read count of -1 so the whole file is read at once. We extract the command
elements from the XML document and then see if the text of the command con-
tains the pattern we’re looking for. If so then emit the name of the command, trim-
ming off unnecessary spaces.

As well as being a handy way to search help, this function is a nice illustration of
using the divide-and-conquer strategy when writing scripts in PowerShell. Each step
in the pipeline brings you incrementally closer to the final solution.

Now that we know how to manually navigate through an XML document, let’s
look at some of the .NET framework’s features that make this a bit easier and more
efficient.

10.3.4 Using XPath

The support for XML in the .NET framework is comprehensive. We can’t cover all of
it in this book, but we will cover one other thing. XML is actually a set of standards.
One of these standards defines a path mechanism for searching through a document.
This mechanism is called (not surprisingly) XPath. By using the .NET frameworks
XPath supports, we can more quickly retrieve data from a document.

Listing 10.6 Search-Help

B Declare function
parameters

C Scan the
about files

D Select the
matching files

B

C

D

334 CHAPTER 10 PROCESSING TEXT, FILES, AND XML

Setting up the test document

We’ll work through a couple of examples using XPath, but first we need something to
process. The following fragment is a string we’ll use for our examples. It’s a fragment
of a bookstore inventory database. Each record in the database has the name of the
author, the book title, and the number of books in stock. We’ll save this string in a
variable called $inventory as shown in listing 10.7.

$inventory = @"
 <bookstore>
 <book genre="Autobiography">
 <title>The Autobiography of Benjamin Franklin</title>
 <author>
 <first-name>Benjamin</first-name>
 <last-name>Franklin</last-name>
 </author>
 <price>8.99</price>
 <stock>3</stock>
 </book>
 <book genre="Novel">
 <title>Moby Dick</title>
 <author>
 <first-name>Herman</first-name>
 <last-name>Melville</last-name>
 </author>
 <price>11.99</price>
 <stock>10</stock>
 </book>
 <book genre="Philosophy">
 <title>Discourse on Method</title>
 <author>
 <first-name>Rene</first-name>
 <last-name>Descartes</last-name>
 </author>
 <price>9.99</price>
 <stock>1</stock>
 </book>
 <book genre="Computers">
 <title>Windows PowerShell in Action</title>
 <author>
 <first-name>Bruce</first-name>
 <last-name>Payette</last-name>
 </author>
 <price>39.99</price>
 <stock>5</stock>
 </book>
 </bookstore>
"@

Listing 10.7 Creating the bookstore inventory
XML PROCESSING 335

Now that we have our test document created, let’s look at what we can do with it.

The Get-XPathNavigator helper function

To navigate through an XML document and extract information, we’re going to need
an XML document navigator. Here is the definition of a function that will create the
object we need.

function Get-XPathNavigator ($text)
{
 $rdr = [System.IO.StringReader] $text
 $trdr = [system.io.textreader]$rdr
 $xpdoc = [System.XML.XPath.XPathDocument] $trdr
 $xpdoc.CreateNavigator()
}

Unfortunately, we can’t just convert a string directly into an XPath document. There
is a constructor on this type that takes a string, but it uses that string as the name of a
file to open. Consequently, the Get-XPathNavigator function has to wrap the
argument string in a StringReader object and then in a TextReader object that
can finally be used to create the XPathDocument. Once we have an instance of
XPathDocument, we can use the CreateNavigator() method to get an instance
of a navigator object.

$xb = get-XPathNavigator $inventory

Now we’re ready to go. We can use this navigator instance to get information out of a
document. First, let’s get a list of all of the books that cost more than $9.

PS (1) > $expensive = "/bookstore/book/title[../price>9.00]"

We’ll store the XPath query in the variable $expensive. Let’s look at the actual
query string for a minute. As you might expect from the name XPath, this query starts
with a path into the document:

 /bookstore/book/title

This path will select all of the title nodes in the document. But, since we only want
some of the titles, we extend the path with a qualification. In this case:

 [../price>9.00]

This only matches paths where the price element is greater than 9.00. Note that a
path is used to access the price element. Since price is a sibling (that is, at the same
level) as the title element, we need to specify this as:

 ../price

This should provide a basic idea of what the query is expressing, so we won’t go into
any more detail. Now let’s run the query using the Select() method on the XPath
navigator.
336 CHAPTER 10 PROCESSING TEXT, FILES, AND XML

PS (2) > $xb.Select($expensive) | ft value

Value

Moby Dick
Discourse on Method
Windows PowerShell in Action

We’re running the result of the query into Format-Table because we’re only inter-
ested in the value of the element. (Remember that what we’re extracting here is only
the title element.) So this is pretty simple; we can search through the database and
find the titles pretty easily. What if we want to print both the title and price? Here’s
one way we can do it.

Extracting multiple elements

To extract multiple elements from the document, first we’ll have to create a new
query string. This time we need to get the whole book element, not just the title ele-
ment, so we can also extract the price element. Here’s the new query string:

PS (3) > $titleAndPrice = "/bookstore/book[price>9.00]"

Notice that this time, since we’re getting the book instead of the title, we can just fil-
ter on the price element without having to use the “..” to go up a path. The problem
now is: how do we get the pieces of data we want—the title and price? The result of
the query has a property called OuterXml. This property contains the XML fragment
that represents the entire book element. We can take this element and cast it into an
XML document as we saw earlier in this section. Once we have it in this form, we can
use the normal property notation to extract the information. Here’s what it looks like:

PS (4) > $xb.Select($titleAndPrice) | %{[xml] $_.OuterXml} |
>> ft -auto {$_.book.price},{$_.book.title}
>>

$_.book.price $_.book.title
------------- -------------
11.99 Moby Dick
9.99 Discourse on Method
39.99 Windows PowerShell in Action

The call to Select() is similar to what we saw earlier. Now we take each object and
process it using the Foreach-Object cmdlet. First we take the current pipeline
object, extract the OuterXml string, then cast that string into an XML document and
pass that object through to the Format-Table cmdlet. We use scriptblocks in the
field specification to extract the information we want to display.
XML PROCESSING 337

Performing calculations on elements

Let’s look at one final example. We want a total price of all of the books in the inven-
tory. This time, we’ll use a slightly different query.

 descendant::book

This query selects all of the elements that have a descendent element titled book.
This is a more general way to select elements in the document. We’ll pipe these docu-
ments into Foreach-Object. Here we’ll specify scriptblocks for each of the begin,
process, and end steps in the pipeline. In the begin scriptblock, we’ll initialize $t to
zero to hold the result. In the foreach scriptblock, we convert the current pipeline
object into an [xml] object as we saw in the previous example. Then we get the price
member, convert it into a [decimal] number, multiply it by the number of books
in stock, and add the result to the total. The final step is to display the total in the
end scriptblock. Here’s what it looks like when it’s run:

PS (5) > $xb.Select("descendant::book") | % {$t=0} `
>> {
>> $book = ([xml] $_.OuterXml).book
>> $t += [decimal] $book.price * $book.stock
>> } `
>> {
>> "Total price is: `$$t"
>> }
>>
Total price is: $356.81

Having looked at building an XML path navigator on a stream, can we use XPath on
an XML document itself? The answer is yes. In fact, it can be much easier than what
we’ve seen previously. First, let’s convert our inventory into an XML document.

PS (6) > $xi = [xml] $inventory

The variable $xi now holds an XML document representation of the bookstore
inventory. Let’s select the genre attribute from each book:

PS (7) > $xi.SelectNodes("descendant::book/@genre")

#text

Autobiography
Novel
Philosophy
Computers

This query says “select the genre attribute (indicated by the @) from all of the descen-
dant elements book”. Now let’s revisit another example from earlier in this section
and display the books and prices again.
338 CHAPTER 10 PROCESSING TEXT, FILES, AND XML

PS (8) > $xi.SelectNodes("descendant::book") |
>> ft -auto price, title
>>

price title
----- -----
8.99 The Autobiography of Benjamin Franklin
11.99 Moby Dick

9.99 Discourse on Method
39.99 Windows PowerShell in Action

This is quite a bit simpler than the earlier example, because SelectNodes() on an
XmlDocument returns XmlElement objects that PowerShell adapts and presents as
regular objects. With the XPathNavigator.Select() method, we’re returning
XPathNavigator nodes, which aren’t adapted automatically. As we can see, work-
ing with the XmlDocument object is the easiest way to work with XML in Power-
Shell, but there may be times when you need to use the other mechanisms, either for
efficiency reasons (XmlDocument loads the entire document into memory) or
because you’re adapting example code from another language.

In this section, we’ve demonstrated how you can use the XML facilities in the
.NET framework to create and process XML documents. As the XML format is used
more and more in the computer industry, these features will be come critical. We’ve
only scratched the surface of what is available in the .NET framework. We’ve only
covered some of the XML classes and a little of the XPath query language. We haven’t
discussed how to use XSLT, the eXtensible Stylesheet Language Transformation lan-
guage that is part of the System.Xml.Xsl namespace. All of these tools are directly
available from within the PowerShell environment. In fact, the interactive nature of
the PowerShell environment makes it an ideal place to explore, experiment, and learn
about XML.

10.3.5 The Import-Clixml and Export-Clixml cmdlets

The last topic we’re going to cover on XML is the cmdlets for importing and export-
ing objects from PowerShell. These cmdlets provide a way to save and restore collec-
tions of objects from the PowerShell environment. Let’s take a look at how they are
serialized.

Serialization is the process of saving an object or objects to a file or a net-
work stream. The components of the objects are stored as a series of pieces,
hence the name serialization. PowerShell uses a special type of “lossy” seri-
alization, where the basic shape of the objects is preserved but not all of the
details. More on this in a minute.

First we’ll create a collection of objects.

PS (1) > $data = @{a=1;b=2;c=3},"Hi there", 3.5

Now serialize them to a file using the Export-CliXml cmdlet:

AUTHOR’S
NOTE
XML PROCESSING 339

PS (2) > $data | export-clixml out.xml

Let’s see what the file looks like:

PS (3) > type out.xml
<Objs Version="1.1" xmlns="http://schemas.microsoft.com/powershe
ll/2004/04"><Obj RefId="RefId-0"><TN RefId="RefId-0"><T>System.C
ollections.Hashtable</T><T>System.Object</T></TN><DCT><En><S N="
Key">a</S><I32 N="Value">1</I32></En><En><S N="Key">b</S><I32 N=
"Value">2</I32></En><En><S N="Key">c</S><I32 N="Value">3</I32></
En></DCT></Obj><S>Hi there</S><Db>3.5</Db></Objs>

It’s not very readable, so we’ll use the dump-doc function from earlier in the chapter
to display it:

PS (4) > dump-doc out.xml
<Objs Version = "1.1"xmlns = "http://schemas.microsoft.com/power
shell/2004/04">

This first part identifies the schema for the CLIXML object representation.

 <Obj RefId = "RefId-0">
 <TN RefId = "RefId-0">
 <T>
 System.Collections.Hashtable
 </T>
 <T>
 System.Object
 </T>
 </TN>
 <DCT>
 <En>

Here are the key/value pair encodings.

 <S N = "Key">
 a
 </S>
 <I32 N = "Value">
 1
 </I32>
 </En>
 <En>
 <S N = "Key">
 b
 </S>
 <I32 N = "Value">
 2
 </I32>
 </En>
 <En>
 <S N = "Key">
 c
 </S>
340 CHAPTER 10 PROCESSING TEXT, FILES, AND XML

 <I32 N = "Value">
 3
 </I32>
 </En>
 </DCT>
 </Obj>

Now encode the string element

 <S>
 Hi there
 </S>

and the double-precision number.

 <Db>
 3.5
 </Db>
</Objs>

Import these objects it back into the session

PS (5) > $new_data = Import-Clixml out.xml

and compare the old and new collections.

PS (6) > $new_data

Name Value
---- -----
a 1
b 2
c 3
Hi there
3.5

PS (7) > $data

Name Value
---- -----
a 1
b 2
c 3
Hi there
3.5

They match.
These cmdlets provide a simple way to save and restore collections of objects, but

they have limitations. They can only load and save a fixed number of primitive types.
Any other type is “shredded”, that is, broken apart into a property bag composed of
these primitive types. This allows any type to be serialized, but with some loss of
fidelity. In other words, objects can’t be restored to exactly the same type they were
originally. This approach is necessary because there can be an infinite number of
XML PROCESSING 341

object types, not all of which may be available when the file is read back. Sometimes
you don’t have the original type definition. Other times, there’s no way to re-create
the original object, even with the type information because the type does not support
this operation. By restricting the set of types that are serialized with fidelity, the
CLIXML format can always recover objects regardless of the availability of the original
type information.

There is also another limitation on how objects are serialized. An object has prop-
erties. Those properties are also objects which have their own properties, and so on.
This chain of properties that have properties is called the serialization depth. For
some of the complex objects in the system, such as the Process object, serializing
through all of the levels of the object results in a huge XML file. To constrain this, the
serializer only traverses to a certain depth. The default depth is two. This default can
be overridden either on the command line using the -depth parameter or by placing
a <SerializationDepth> element in the type’s description file. If you look at
$PSHome/types.ps1xml, you can see some examples of where this has been done.

10.4 SUMMARY

In this chapter, we covered the kind of tasks that are the traditional domain of script-
ing languages. We looked at:

• Basic text processing—how to split and join strings using the [string]::-
Split() and [string]::Join() methods.

• More advanced text processing with the [regex] class. We saw how we can use
this class to conduct more advanced text operations such as tokenizing a string.

• The core cmdlets and how they correspond to the commands in other shell
environments.

• How to set up shortcuts to long or specialized paths in the filesystem using New-
PSDrive; for example, New-PSDrive AppData FileSystem "$Home\Ap-
plication Data" creates a drive named AppData mapped to the root of the
current user’s Application Data directory.

• How to read and write files in PowerShell using Get-Content and Set-
Content, and how to deal with character encodings in text files.

• How to work with binary files. We wrote a couple handy utility functions in the
process.

• Using the Select-String cmdlet to efficiently search through collections of
files.

• The basic support in PowerShell for XML documents in the form of the XML
object adapter. PowerShell provides a shortcut for creating an XML document
with the [xml] type accelerator; for example: [$xml]"<docroot>...</
docroot>".
342 CHAPTER 10 PROCESSING TEXT, FILES, AND XML

• How to construct XML documents by adding elements to an existing document
using the CreateElement() method.

• Using the XMLReader class to search XML documents without loading the
whole document into memory.

• Building utility functions for searching and formatting XML documents.

• Examples of processing XML documents using PowerShell pipelines.

• How to save and restore collections of objects using Import-CLIXml and
Export-CLIXml.
SUMMARY 343

C H A P T E R 1 1

Getting fancy—
.NET and WinForms

11.1 Using .NET from PowerShell 345
11.2 PowerShell and the Internet 361
11.3 PowerShell and graphical user interfaces 371
11.4 Summary 391
I love it when a plan comes together!

 —Col. John “Hannibal” Smith, The A-Team TV Show

When we began designing PowerShell, our focus was almost exclusively on cmdlets.
The plan was to have lots of cmdlets and everything would be done through them.
Unfortunately, as Robert Burns observed, “the best laid plans of mice and men often
go awry” and we found that we didn’t have the resources to get all of the planned
cmdlets completed in time. Without the cmdlets, we wouldn’t have adequate cover-
age for all of our core scenarios. How to solve this we asked? “Let’s just depend on
.NET” was the answer. We decided to make it easier to work directly with the .NET
framework. That way, while it might not be as easy to do everything as we had
wanted, at least it would be possible. (We looked at some of this in chapter 10 where
we used the [string] and [regex] types to do things not directly supported by
cmdlets or the language.)
344

In retrospect, this may have been one of the best things to happen to the project.
Not only did we backfill our original scenarios, but the set of problem domains (e.g.,
graphical user interface [GUI] programming) in which we found PowerShell to be
applicable exceeded our wildest expectations. In this chapter, we’ll look at some of
those scenarios. We’ll also look at considerations in PowerShell’s support for .NET
and how lack of awareness of those considerations might lead to problems.

11.1 USING .NET FROM POWERSHELL

Everything in .NET has a type, whether it’s a class, interface, structure, or primitive
type such as an integer (see chapter 1). To work with .NET, we need to find the types
necessary to get the job done. We’ve covered many of the most commonly used types
in previous chapters, but there are many more available in PowerShell. In this section,
we’ll look at how to find and inspect those types. We’ll also look at how to make addi-
tional types available by loading .NET libraries called assemblies. For example, loading
additional assemblies will be necessary to do things such as the GUI programming we
talked about earlier. In the process, we’ll build handy tools to help with these tasks.
We’ll also look at how to create instances of these types, Finally, we’ll address some of
the potentially problematic areas mentioned previously.

11.1.1 .NET basics

Let’s start with an overview of the .NET type system. The basic arrangement of ele-
ments on types in .NET is as follows: members (properties, methods, and so on) are
contained in classes, structs, and interfaces. Version 2 of .NET also introduced the
support of generic types. These elements are in turn grouped into namespaces.

Keep in mind that the .NET type system was designed to allow you to con-
struct arbitrarily sophisticated applications. As a consequence, it is itself
fairly complex. However, the designers of this system did an excellent job
of not requiring you to know everything in order to do anything. It, like
PowerShell, was designed to support progressive development where what
you need to know scales with the complexity of what you’re trying to do.
Simple things remain simple and the level of complexity scales reasonably
with the complexity of the application. PowerShell is an excellent way to
learn and explore .NET.

Let’s look at System.Collections.ArrayList.Add() as an example of this.
The Add() method exists on the class ArrayList that lives in the namespace Sys-
tem.Collections. Another example is the IEnumerable interface, which is also
in System.Collections. This interface has a single method, GetEnumerator().

This arrangement of types is called logical type containment. We also need to
understand physical type containment. In other words, where do these collections of
types live on a computer? This arranging is done through the assemblies we men-
tioned earlier. An assembly contains the definitions for one or more types. Since a set

AUTHOR’S
NOTE
USING .NET FROM POWERSHELL 345

of types is contained in an assembly, clearly the set of assemblies that are loaded
determines the complete set of types available to us. PowerShell loads most of the
assemblies we need for day-to-day work by default when it starts, but sometimes (like
when we want to do GUI programming) we’ll have to load additional assemblies. In
other words, we tell PowerShell the well-known name or path to an assembly and
PowerShell inserts the assembly code into its environment. We’ll cover how to do
this in detail in the next section.

11.1.2 Working with assemblies

As we mentioned, the physical partitioning of the .NET framework is based on the
assembly. Assemblies are a refinement of the dynamic link library (DLL) facility that has
been part of Microsoft Windows from the beginning. (In UNIX, the equivalent concept
is called shared libraries.) Let’s review the benefits and liabilities of dynamic linking.

The DLL mechanism allows a program to dynamically load code at runtime. The
traditional purpose of this feature was simply to cut down on the size of programs—
instead of statically linking a library to an executable; all executables could share one
copy of that code. This makes the executables smaller and also allows them to be ser-
viced. By serviced, we mean that a bug in the DLL could be fixed for all programs that
used that DLL by simply replacing one file. But all is not sweetness and light, as they
say. Just as you could fix all users of a DLL, you could just as easily break them all. A
fix that may be intended to fix a specific executable could unintentionally cause
another executable to fail. Another problem is versioning. How can you change
things over time? If you add new things to a DLL, you may break existing programs.
And so you introduce a new version of the DLL. But now the developer has to decide
which version of the DLL to use. Should they use the latest version? What if it isn’t
on all machines yet? And what if someone installs a malicious copy of the DLL to
introduce a virus?

With .NET, Microsoft tried to solve some of these problems. An assembly is a
DLL with additional data in the form of a manifest. This manifest lists the contents of
the DLL as well as the name of the DLL. Assembly names are particularly interesting.
.NET introduced the idea of a strong name. A strong name uses public key cryptogra-
phy to verify the author of the DLL. When a .NET program is linked against a strong-
named assembly, it will run only if exactly the same assembly it was linked against is
present. Simply replacing the file won’t work, because the strong name will be wrong.
Included in the strong name is the version number. This means that when the DLL is
loaded, the correct version will always be loaded even if later versions are available.

Loading and exploring assemblies

All that stuff we just talked about? Well, forget it. Linking and strong naming only
apply to compiled .NET programs and PowerShell is an interpreter.
346 CHAPTER 11 GETTING FANCY— .NET AND WINFORMS

The interpreter itself is a compiled .NET program, so all of the assemblies
it’s linked against are loaded by default. This is why most of the types we
need are already available and we don’t have to do anything extra to get
at them.

Since PowerShell is an interpreter and has no “link” phase, in order for it to use addi-
tional assemblies, we have to explicitly load them. Unfortunately, version 1 of Power-
Shell doesn’t have any cmdlets that do this, so we have to use .NET methods.
Remember that whole “not easy but possible” discussion from the start of the chap-
ter? This is where it starts.

To load new assemblies, we need to use the type System.Reflection.Assem-
bly. Here’s an example:

PS (2) > [system.reflection.assembly]::LoadWithPartialName(
>> "System.Windows.Forms") | fl
>>

CodeBase : file:///C:/WINDOWS/assembly/GAC_MSIL/Sy
 stem.Windows.Forms/2.0.0.0__b77a5c56193
 4e089/System.Windows.Forms.dll
EntryPoint :
EscapedCodeBase : file:///C:/WINDOWS/assembly/GAC_MSIL/Sy
 stem.Windows.Forms/2.0.0.0__b77a5c56193
 4e089/System.Windows.Forms.dll
FullName : System.Windows.Forms, Version=2.0.0.0,
 Culture=neutral, PublicKeyToken=b77a5c5
 61934e089
GlobalAssemblyCache : True
HostContext : 0
ImageFileMachine :
ImageRuntimeVersion : v2.0.50727
Location : C:\WINDOWS\assembly\GAC_MSIL\System.Win

 dows.Forms\2.0.0.0__b77a5c561934e089\Sy
 stem.Windows.Forms.dll
ManifestModule : System.Windows.Forms.dll
MetadataToken :
PortableExecutableKind :
ReflectionOnly : False

This not only loaded the assembly, it also returned an instance of System.Reflec-
tion.Assembly that has a lot of information about the assembly. Take a look at the
FullName field. We loaded the assembly using its partial name. The full name is the
strong name we talked about previously:

System.Windows.Forms, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089

It’s actually too long to fit on one line. It includes the namespace of the assembly, the
version number, the culture for this assembly, and the public key used to sign the
assembly. You can load a specific version of an assembly with the full name:

AUTHOR’S
NOTE
USING .NET FROM POWERSHELL 347

PS (5) > [reflection.assembly]::Load(
>> "System.Windows.Forms, Version=2.0.0.0, Culture=neutral," +
>> "PublicKeyToken=b77a5c561934e089")
>>

GAC Version Location
--- ------- --------
True v2.0.50727 C:\WINDOWS\assembly\GAC_MSIL\System.Win...

Keep in mind is that we didn’t really load the assembly again. Once an assembly has
been loaded into a process, it can’t be unloaded, so all this really did was verify that
the assembly was loaded.

There is something else to note. Even when we specify the full name of the assembly,
we didn’t have to tell the system were to find the file. This is because the assembly has
been “GACed”; that is, it has been added to the Global Assembly Cache (GAC). The
GAC is a location defined by the system for where it should look up assemblies by
default. Sometimes, however, the assembly that you’re loading hasn’t been GAC’ed. In
this case, we can load it by specifying the path to the file. If you look at the output, we
can see where this file is stored. Let’s “load” it one more time using the file name:

PS (6) > $name = "C:\WINDOWS\assembly\GAC_MSIL\" +
>> "System.Windows.Forms\2.0.0.0__b77a5c561934e089\" +
>> "System.Windows.Forms.dll"
>>
PS (7) > [reflection.assembly]::LoadFrom($name)

GAC Version Location
--- ------- --------
True v2.0.50727 C:\WINDOWS\assembly\GAC_MSIL\System.Win...

At this point, we’ve covered the most important parts of loading assemblies that we
need to know to work with PowerShell. This is another “tip of the iceberg” topics where
we’ve only covered the minimum necessary. For more details read the Microsoft Devel-
oper Network documentation at http://msdn.microsoft.com.

We’ve mastered the arcane incantations needed to load assemblies. So what’s
next? Obviously, now that we have the assembly loaded, we need to be able to find
out what types it contains.

11.1.3 Finding types

There are a lot of types with a lot of members loaded into the PowerShell process. To
get the list of what’s available, we simply ask the system to tell us. To start, we need to
get a list of the assemblies that are loaded. A handy function that returns that list is
shown in listing 11.1.
348 CHAPTER 11 GETTING FANCY— .NET AND WINFORMS

function Get-Assemblies
{
 [AppDomain]::CurrentDomain.GetAssemblies()
}

Once we have the list of assemblies, we can use the GetTypes() method on the
assembly object to get all of the types in the assembly. We’ll wrap this in a function as
well, as shown in listing 11.2.

function Get-Types ($Pattern=".")
{
 Get-Assemblies | %{ $_.GetExportedTypes() } |
 where {$_ -match $Pattern}
}

This function will get the full names of all of the types in each assembly and match
them against the pattern provided in the function argument (which defaults to match
everything). Let’s use this function to find all of the types that have the namespace
prefix System.Timers.

PS (1) > Get-Types ^system\.timers | %{ $_.FullName }
System.Timers.ElapsedEventArgs
System.Timers.ElapsedEventHandler
System.Timers.Timer
System.Timers.TimersDescriptionAttribute

In this example, we searched through all of the assemblies and found the five types
that matched the regular expression we specified. (There are enough types loaded in
PowerShell that this can take a while to run.)

Once we know how to get all of the types, let’s explore the members of those
types. We want to see all of the methods defined on all of the types in the Sys-
tem.Timers namespace that have the word “begin” in their name. To make this
task easier, we’ll define a couple of filters to help us with it. Here’s what we want the
output to look like:

PS (1) > Get-Types ^system\.timers | Select-Members begin |
>> Show-Members -method
>>
[System.Timers.ElapsedEventHandler]:: System.IAsyncResult BeginI
nvoke(System.Object, System.Timers.ElapsedEventArgs, System.Asyn
cCallback, System.Object)
[System.Timers.Timer]:: Void BeginInit()

Listing 11.1 Get-Assemblies function

Listing 11.2 Get-Types function
USING .NET FROM POWERSHELL 349

In the output, we see that two methods match our requirements—the BeginIn-
voke() method on System.Timers.ElapsedEventHandler and BeginInit()
on System.Timers.Timer.

Now let’s look at the filters we used in this example. The first is a filter that will
dump all of the members whose names match a regular expression. The code for this
filter is shown in listing 11.3.

filter Select-Members ($Pattern = ".")
{
 $_.getmembers() | ? {$_ –match $Pattern }
}

By now, the operation of this filter should be obvious, so we won’t bother explaining
it. The second filter deals with the presentation of the results, since the default pre-
sentation for the member information is not all that it might be. This filter is shown
in listing 11.4.

filter Show-Members ([switch] $Method)
{
 if (!$Method –or $_.MemberType -match "method")
 {
 "[{0}]:: {1}" -f $_.declaringtype, $_
 }
}

The operation of the filter is very straightforward. If -method is specified, only
methods will be displayed. The member to be displayed will be formatted into a
string displaying the type containing the method and the name of the method.

Now that we’ve covered finding types pretty thoroughly, we can move to the next
step and create instances of the types we’ve found.

11.1.4 Creating instances of types

Now that we can find types, we need to know how to create instances of these types,
since most of the work is done by instances (although there are some types such as
[math] that only have static members). For example, before we can search using the
[regex] type, we need to create an instance of that type from a pattern string.

Yes, [regex] has static members too—we saw that in chapter 10—but se-
cretly the static members are creating instances under the covers. Sneaky
critters aren’t they?

Listing 11.3 Select-Members filter

Listing 11.4 Show-Members filter

AUTHOR’S
NOTE
350 CHAPTER 11 GETTING FANCY— .NET AND WINFORMS

The New-Object cmdlet is the preferred way to do it. Figure 11.1 shows the signa-
ture for this cmdlet.

Be careful. While the signature for the cmdlet is pretty simple, it can be more dif-
ficult to use than you might think. People who are used to programming in languages
such as C# have a tendency to use this cmdlet like the new operator in those languages.
As a consequence, they tend to write expressions like:

New-Object String($x,1,3)

Unfortunately, writing it this way obscures the fact that it’s a cmdlet, making things
confusing. It will work fine, but it looks too much like a function call in other pro-
gramming languages, and that leads people to misinterpret what’s actually happening.
As we saw in figure 11.1, the syntax for New-Object is

New-Object [-TypeName] <String> [[-ArgumentList] <Object[]>]

so the previous example could be written like:

New-Object -TypeName string -ArgumentList $x,1,3

The comma notation indicates an argument that is passed as an array. This is equiva-
lent to

$constructor_arguments= $x,1,3
New-Object string $constructor_arguments

Note that we’re not wrapping $constructor_arguments in yet another array. If
you want to pass an array as a single value, you need to do it yourself and write it in
parentheses with the unary comma operator, as discussed in chapter 3.

Let’s look at some actual examples using New-Object. In the first example, we
want to construct a new string object from a char array, giving a specific offset
into the source array and also specify the number of characters to copy:

PS (1) > New-Object string ([char[]] "Hello"),1,4
ello

In the example command, the object to create was a string and we passed three argu-
ments to the string constructor: the character array, the start index, and the length to

New-Object [-TypeName] <String > [[-ArgumentList] <Object []>]

The cmdlet name The name of type to create
The arguments to the

type’s constructor

Figure 11.1 The New-Object cmdlet parameters
USING .NET FROM POWERSHELL 351

copy. This created a string starting from the second character (remember, origin 0 for
array indexing) and copied four characters. This example is straightforward. If we put
the char array into a variable first, the command is even simpler:

PS (2) > $str = [char[]] "Hello"
PS (3) > New-Object string $str,1,4
ello

A much trickier example is one where we want to pass the char array as the only
argument to the constructor. Now we need to wrap it in a nested array using the
unary comma operator:

PS (4) > New-Object string (,$str)
Hello

In this example, we’ve created a string by copying all of the characters from the
char array, starting from the beginning.

It would have been a better design for New-Object to have taken a variable num-
ber of arguments instead of passing them all as a single array; however, the current
design matches the underlying activator APIs. The activator APIs are the methods
.NET provides for dynamically constructing instances of types. In fact, this is what
New-Object eventually calls.

PS (5) > [activator]::CreateInstance([string],[char[]] "Hello")
Hello
PS (6) > [activator]::CreateInstance([string],
>>> ([char[]] "Hello",1,3))

ell

Remember we said earlier that New-Object is the preferred way to create
objects? Well, this is the other way to do it. It’s somewhat more complex
than using the cmdlet, which is why using New-Object is the recom-
mended approach.

Of course, this is PowerShell, and we can fix it if we want to. Here’s an example of
how we could work around some of these deficiencies by defining a function:

PS (7) > function newobj
>> {
>> param ($type, [switch] $com, [switch] $strict)
>> if ($com)
>> {
>> New-Object -com -strict:$strict $type $args
>> }
>> else
>> {
>> New-Object $type $args
>> }
>> }
>>

AUTHOR’S
NOTE
352 CHAPTER 11 GETTING FANCY— .NET AND WINFORMS

Now we can use this function with the constructor arguments separated by spaces.

PS (8) > newobj string ([char[]] "Hello")
Hello
PS (9) > newobj string ([char[]] "Hello") 2 3
llo
PS (10) >

In the longer term, we (the PowerShell team) are planning to build the ability to cre-
ate objects into the PowerShell language itself, making object creation easier and
more consistent. For the first version of PowerShell, however, New-Object is the
tool of choice out of the box.

While we’re on the subject of pitfalls, let’s cover a couple other areas where we
may run into difficulty.

11.1.5 PowerShell is not C#—A cautionary tale

Experienced .NET developers sometimes have problems learning PowerShell because
it doesn’t work in quite the same way as they’re used to. C# programmers in particular
have problems because PowerShell is syntactically similar to C#, resulting in an even
stronger expectation that it should behave like C#. In this section, we’re going to
cover a couple of the areas that cause the most cognitive dissonance. In other words,
this is where expected behavior based on prior experience and the actual behavior are
most surprisingly different.

Automatic unraveling of enumerators

One problem that people run into with .NET methods that return enumerators is
that PowerShell will unravel the enumerator. This behavior is correct and by design
for PowerShell, but can be confusing for .NET programmers. Common practice in
C# is to use the Open() method to get an enumerator, process that enumerator, and
then call Close(). PowerShell will see the enumerator returned from the Open()
call and process it immediately. This is especially confusing when people try to use
the return keyword. They expect return to return a single value; however:

 return 1,2,3,4

is equivalent to

 1,2,3,4
 return

To return an enumerable object, we have to wrap it in another array using the unary
comma operator like

 return ,(1,2,3,4)

or

 ,(1,2,3,4)
 return
USING .NET FROM POWERSHELL 353

One might think that using the array subexpression operator @(...)
would work here; however, as described in chapter 5, all this operator does
is guarantee that the result is an array. What we really need to do is con-
struct a new one-element array containing the array we want to return. This
new array will be discarded in the unraveling process, but its presence en-
sures that the contained array is returned as a single element.

As an example, say we’re writing a function that executes a query against a database. It
calls Open() to return a database reader object. But this $reader object is an enu-
merator, so instead of being returned as a single element, it’s streamed out of the
function. For the function to return it atomically, it should look like listing 11.5.

function Get-DataBaseReader ($query , $connection)
{
 $SqlCmd = New-Object System.Data.SqlClient.SqlCommand `
 $query,$connection
 if ("Open" -ne $connection.state) { $connection.Open() }
 $reader = $SqlCmd.ExecuteReader()

 , $reader
}

We’ve executed the query and $reader is an enumerator for the results of that query.
To return the enumerator instead of the results, we use the unary comma.

By doing this, we made the example work like the C# equivalent. But we’re not
writing C#. To make this more PowerShell-like, consider following the model that
commands such as Get-Content use. These commands hide the details of opening
and closing the stream so the user never has to worry about forgetting to close a handle.
The command pushes objects into the pipeline instead of requiring the user to pull
them out with a read call. Listing 11.6 is the revised, more PowerShell-like function.

function get-fromdatabase ($cmd, $connection)
{
 If ($connection is [string])
 {
 $conn = New-Object -Typename System.Data.SqlClient.SqlConnection
 $conn.ConnectionString = $string
 $conn.open()
 }
 elseif ($connection is [System.Data.SqlClient.SqlConnection])
 {
 $conn = $connection
 if ("Open" -ne $conn.state) { $conn.Open() }

AUTHOR’S
NOTE

Listing 11.5 Get-DataBaseReader function

Listing 11.6 Get-FromDatabase function
354 CHAPTER 11 GETTING FANCY— .NET AND WINFORMS

 }
 else {
 throw `
 '$connection must be either a database connection or a string'
 }
 $SqlCmd = New-Object System.Data.SqlClient.SqlCommand $cmd,$conn
 # run the query stream the data to output pipe
 $SqlCmd.ExecuteReader()

 # now close the query…
 $connection.close()
}

In the revised function, all of the open/read/close details are hidden and we simply
stream the results into the Foreach-Object cmdlet. Using this revised function to
process a query looks like:

get-fromdatabase $query, $connection | % { process-data… }

The other advantage this approach provides, besides usability, is that when we write
PowerShell functions and scripts, we avoid any problems with the enumerators. In
fact, the code becomes simpler overall because we don’t have to write an explicit loop.
PowerShell takes care of all of the details.

In summary, if we write PowerShell like PowerShell, it all works. If we write Pow-
erShell like C#, we run into problems because PowerShell is not C#.

Using methods that take path names

Another thing to keep in mind is that when using any .NET method that takes path
names, we must always use full path names. This requirement stems from the fact that
PowerShell maintains its own idea of what the current working directory is and this
may not be the same as the process current working directory. .NET methods that
take paths, on the other hand, always use the process current directory when resolving
nonabsolute paths.

Let’s clarify the current directory question by looking at an example. We’ll start
PowerShell, and then use the command pwd (which is an alias for Get-Location)
to see where we are.

PS (1) > pwd

Path

C:\Documents and Settings\brucepay

Now we’ll use the CurrentDirectory static method on the .NET class Sys-
tem.Environment to check the process working directory.

PS (2) > [System.Environment]::CurrentDirectory
C:\Documents and Settings\brucepay
USING .NET FROM POWERSHELL 355

So far they match. Now use the PowerShell cd command to set the PowerShell cur-
rent working directory to the root of the C: drive, and then verify the path with pwd.

PS (3) > cd c:\
PS (4) > pwd

Path

C:\

Fine—everything is as we would expect. But now we check the process current work-
ing directory.

PS (5) > [Environment]::CurrentDirectory
C:\Documents and Settings\brucepay

It still points to the original location. Clearly, using cd in PowerShell doesn’t affect
the process current working directory.

Now let’s look at the another reason for always using full path names. Let’s cd
into the root of the registry.

PS (6) > cd hklm:\
PS (7) > pwd

Path

HKLM:\

The PowerShell current directory is now in the registry. This is something that the
process current directory just can’t handle. It can only ever point to some place in the
filesystem. Clearly, the PowerShell and process notions of current directory have to be
different.

There can be more than one PowerShell session (called a runspace) in a pro-
cess at the same time. Each of these runspaces can have its own current di-
rectory. The process only has a single current directory value. This is
covered in the PowerShell SDK documents and in Jim Truher’s book Win-
dows PowerShell in Practice, also from Manning Publications.

Let’s reiterate why this behavior is a problem when using .NET methods: any .NET
method that is passed a relative pathname will use the process current working direc-
tory to resolve the path instead of the PowerShell current working directory. Let’s
check this out. We’ll cd back into the root of the C: drive again and create a text file
“hello.txt”.

PS (8) > cd c:\
PS (9) > "Hello there" > hello.txt

AUTHOR’S
NOTE
356 CHAPTER 11 GETTING FANCY— .NET AND WINFORMS

We can get this file from PowerShell using Get-Content and specifying a relative
path:

PS (10) > get-content hello.txt
Hello there

It works. But now when we try using a .NET method and specify a relative path:

PS (11) > [io.file]::ReadAllText("hello.txt")

Exception calling "ReadAllText" with "1" argument(s): "Could not
 find file 'C:\Documents and Settings\brucepay\hello.txt'."
At line:1 char:23
+ [io.file]::ReadAllText(<<<< "hello.txt")

it fails. This is because it’s using the process current directory to resolve the relative
path, and that’s still pointing to the directory where PowerShell was started.

PS (12) > [environment]::currentdirectory
C:\Documents and Settings\brucepay

The PowerShell environment includes a cmdlet Resolve-Path, which is intended
to make this scenario easy to work around. When the output of this command is
converted into a string, it will be the full provider path to the target object—in this
case the file. Let’s try this:

PS (13) > [io.file]::ReadAllText((resolve-path "hello.txt"))
Hello there

There is another, even easier way to do this, although it is not strictly speaking per the
guidelines. Instead of Resolve-Path, we can use the $PWD shell variable along with
string expansion to prefix the path.

PS (13) > [io.file]::ReadAllText("$pwd\hello.txt")
Hello there

Not only is this easier, it also has the advantage that it will work to produce paths that
don’t exist yet. If you’re creating a file, Resolve-Path will fail because it can only
resolve existing paths. With the string expansion approach, this problem doesn’t exist.
String expansion doesn’t know anything about paths—it’s just giving us a new string.

This is an important rule to keep in mind. If you look at the examples in chapter 10
where we were using the .NET XML APIs to process files, we always made sure to pass
in absolute paths. If we are consistent and always use absolute file paths with methods
that take paths, there won’t be any problems. (Though it’s usually easiest to use the
Get-Content cmdlet instead. If we do, everything will work and we won’t have to
remember this extra step or close the handle when we’re done with it.)

Working with generic types, the next topic, has less to do with prior expectations
and more to do with features that were cut from version 1.0 of PowerShell.
USING .NET FROM POWERSHELL 357

11.1.6 Working with generic types

In version 2.0 of .NET, a new feature was introduced called generic types (or simply
generics). Do you need to know how to create generic types in your day-to-day work
with PowerShell? For the most part, the answer is no. However, you may eventually
encounter a situation where you do need to do it, at which point you can come back
and reread this section.

Generics introduce the idea of a type parameter. Instead of simply passing a bunch
of arguments when you create an instance of a object, you can also pass in type
parameters that determine the final types of some part of the object. This is rather
confusing if you haven’t encountered the concept before. As usual, an example
should make things clearer. Generics are easiest to understand when we talk about
creating collections. Prior to the introduction of generics, if we wanted to create a
collection class we had to either write a new version of the class for each type of object
we wanted it to store or we had to allow it to hold any type of object, which meant
that we had to do our own error checking. With generics, we can write a collection
that can be constrained to only containing integers or strings or hashtables.

Again, if you aren’t a programmer, you’re probably thinking—wow, this is so
geeky I can’t imagine caring about this. The reason that we, as PowerShell users, need
to care is that some of the classes we may want to work with will use generic types.
(PowerShell itself uses them a lot.)

The first version of PowerShell makes this moderately easy if we’re working with
an existing instance of an object where the type parameterization has already been
done. The type converter makes it all work. The problem arises if we have to create a
generic instance. This is, well, hard. Let’s look at an example.

Creating an instance of a generic type

To create an instance of a generic type, we need to have the full name of the generic
type. This is made up of the name of the type, followed by a backtick and the number
of type parameters. As this is hard to get right when typing it, we’ll create a helper
function to do the tricky bits for us. This function is shown in the next example:

PS (1) > function New-GenericList ([type] $type)
>> {
>> $base = [System.Collections.Generic.List``1]
>> $qt = $base.MakeGenericType(@($type))
>> , (new-object $qt)
>> }
>>

We start with the base name of the collection’s type, System.Collec-

tions.Generic.List. This type takes one type parameter, so we have to include
``1 in the name. This gives us an open generic type. It’s called “open” because we
haven’t bound the type parameters yet.
358 CHAPTER 11 GETTING FANCY— .NET AND WINFORMS

Now we need to create a closed type where the type parameters are bound. We do
this with the MakeGenericType() method on the open generic type object. Once we
have the closed type, we can use the New-Object cmdlet to create an instance of this
type. Note the comma operator in front of the call to New-Object. This is necessary
because we’re creating a list inside a function and the default behavior in PowerShell
is to stream the contents of a list rather than returning the list as an atomic object.

Now let’s use this function. We’ll create a list with the type parameter [int].

PS (2) > $intList = New-GenericList int

Next we add numbers to the list, then display it.

PS (3) > $intList.Add(123)
PS (4) > $intList.Add(456)
PS (5) > $intList
123
456
PS (6) > $intList.count
2

When we try to add something that isn’t a number, we get an error.

PS (7) > $intList.Add("abc")
Cannot convert argument "0", with value: "abc", for "Add" t
o type "System.Int32": "Cannot convert value "abc" to type
"System.Int32". Error: "Input string was not in a correct f
ormat.""
At line:1 char:13
+ $intList.Add(<<<< "abc")

If we add something that isn’t a number but might be, the PowerShell type converter
will conveniently convert it for us.

PS (8) > $intList.add("789")
PS (9) > $intList[2]
789

When we check the target type, it’s an integer. This gives us an expandable list like an
ArrayList, but constrained to only holding integers.

PS (10) > $intList[2].gettype().FullName
System.Int32

Now let’s look at another example. This time we’ll build a generic dictionary.

Instantiating a generic dictionary

A generic dictionary is like a hashtable; it’s made up of key/value pairs, but we want
to limit the keys to strings and the values to integers. Once again, we’ll write a conve-
nience function to handle the heavy lifting. Here’s the function to do this:
USING .NET FROM POWERSHELL 359

PS (11) > function New-GenericDictionary ([type] $keyType,
>> [type] $valueType)
>> {
>> $base = [System.Collections.Generic.Dictionary``2]
>> $ct = $base.MakeGenericType(($keyType, $valueType))
>> , (New-Object $ct)
>> }
>>

Again, start with the base type of the collection, followed by `2 because we have two
type parameters this time. We pass the two type parameters to the function into the
call to MakeGenericType() as an array. This will give us the closed type for the
generic dictionary. Finally, we return an instance of the closed type.

We’ll use this function to build a dictionary that is constrained to permit only
strings for keys and integers for the values.

PS (12) > $gd = New-GenericDictionary string int

Let’s enter values and display the result:

PS (13) > $gd["red"] = 1
PS (14) > $gd["blue"] = 2
PS (15) > $gd

Key Value
--- -----
red 1
blue 2

Next try to assign a nonstring key. This would work with a regular hashtable, but fails
with the generic dictionary instance.

PS (16) > $gd[13] = 3
Array assignment to [13] failed: The value "13" is not of type "
System.String" and cannot be used in this generic collection.
Parameter name: key.
At line:1 char:5
+ $gd[1 <<<< 3] = 3

Also note that this time, the PowerShell type converter didn’t try to convert to the tar-
get type. The type signature is too complex for it to figure out, so we’ll have to explic-
itly cast the arguments.

Finally, let’s look at the full name of the type of object stored in $gd.

PS (17) > $gd.gettype().FullName
System.Collections.Generic.Dictionary`2[[System.String, mscorlib
, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e
089],[System.Int32, mscorlib, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089]]
PS (18) >
360 CHAPTER 11 GETTING FANCY— .NET AND WINFORMS

To reiterate the comment from the beginning of this section, very rarely will you need
some of these esoteric capabilities, but when you do need them, they can be incredi-
bly valuable.

Enough with the .NET trivia challenge. In the remainder of this chapter, we’ll
look at how we can apply some of the things we’ve learned to build more interesting
applications.

These examples are designed to demonstrate the range of tasks that can be
addressed with PowerShell rather than be strictly practical. For some more
purely practical examples using .NET in admin scenarios, take a look at ap-
pendix B.

11.2 POWERSHELL AND THE INTERNET

In this section, we’re going to put the network back into .NET. As one would expect
from a modern programming environment, .NET (and consequently PowerShell) has
a pretty comprehensive set of types for doing network programming.

The .NET framework has good networking capabilities, but I suspect that
the name came out of the marketing frenzy during the first Internet bubble:
.NET 1.0 was released in 2001. At that time, people with calling everything
dot-something. I’m surprised we didn’t end up with .Coke or Pepsi.NET
or some other silliness.

In this section, we’ll look at a couple useful examples of doing network programming
with the .NET networking types.

11.2.1 Example: Retrieving a web page

The most common networking task in the Internet age is to download a web page.
Here’s how to do that in PowerShell using the [system.net.webclient] type.
This is a type that provides common methods for sending data to and receiving data
from websites (or anything else that can be addressed with a URL). In this example,
we’ll use this type to download data from the MSDN blog home page. First we need
to create an instance of System.Net.WebClient:

PS (1) > $wc = New-Object net.webclient

And we’re ready to go. Let’s take a look at what’s happening on the MSDN blog site.
Let’s download the page into a variable:

PS (2) > $page = $wc.DownloadString("http://blogs.msdn.com")
PS (3) > $page.length
28778

Checking the length, it’s a bit long to look at as text. Let’s simplify things a bit and get
rid of the HTML tags.

PS (4) > $page = $page -replace "\<[^<]*\>"
PS (5) > $page.length
11419

AUTHOR’S
NOTE

AUTHOR’S
NOTE
POWERSHELL AND THE INTERNET 361

We used regular expressions to remove anything enclosed in “<” and “>”. This has
shortened things a lot, but it’s still a bit long. Let’s get rid of unnecessary spaces.

PS (6) > $page = $page -replace " +", " "
PS (7) > $page.length
10999

Now let’s split it into a collection of lines.

PS (8) > $lines = $page.split("`n")
PS (9) > $lines.count
520

And get rid of the empty lines.

PS (10) > $lines = $lines | ?{$_ -match '[a-z]'}
PS (11) > $lines.count
192

And now we have something pretty short. Let’s see what we’ve got. We’ll skip ahead
in the collection of lines, since there’s still some preamble in the document.

PS (13) > $lines[20..30]
 RSS
 OPML
 Blogs By Category
Front Page News
 Sydney Only Free WPF Hands On Training 21st July
 Microsoft and Dimension Data would like to invite
 you to a com
plementary half day hands on training covering Windows Presentat
ion Foundation. The Microsoft Windows Presentation Foundat
ion (formerly code named "Avalon") provides the foundation for..
.
 posted @
 17 minutes ago
 by
 Ozzie Rules Blogging
 Windows CE 6 and Windows Mobile Virtual Labs

In the text, we can see a fragment of a blog posting . Most of this has just been string
manipulation, which we’ve seen before. The only new thing was using the WebClient
API. Now let’s see what else we can do.

11.2.2 Example: Processing an RSS feed

Let’s explore RSS feeds. These are feeds that let us see the most recent postings in a
blog formatted in XML. As we saw in the previous chapter, XML is easy to work with
in PowerShell. Listing 11.7 shows a function to download an RSS feed and print out
the feed titles and links.
362 CHAPTER 11 GETTING FANCY— .NET AND WINFORMS

function Get-RSS ($url)
{
 $wc = New-Object net.webclient
 $xml = [xml](New-Object net.webclient).DownloadString($url)
 $xml.rss.channel.item| select-object title,link
}

Now let’s run it:

PS (3) > get-rss http://blogs.msdn.com/powershell/rss.aspx |
>> select-object -first 3
>>

title link
----- ----
Are ScriptBlock parameters im... http://blogs.msdn.com/powers...
Revisiting: Listing all the C... http://blogs.msdn.com/powers...
How can a script tell what di... http://blogs.msdn.com/powers...

Now let’s use this function in something a bit more useful. Listing 11.8 shows a func-
tion that will display a menu of the most recent articles in an RSS feed. You can select
an item and it will be displayed in Internet Explorer.

function Get-RSSMenu (
 $url="http://blogs.msdn.com/powershell/rss.aspx",
 $number=3
)
{

 $entries = get-rss $url | select-object -first $number
 $links = @()
 $entries | % {$i=0} {
 "$i - " + $_.title
 $links += $_.link
 $i++
 }
 while (1)
 {
 $val = read-host "Enter a number [0-$($i-1)] or q to quit"
 if ($val -eq "q") { return }
 $val = [int] $val
 if ($val -ge 0 -and $val -le $i)
 {
 $link = $links[$val]
 "Opening $link`n"
 explorer.exe $link
 }
 }
}

Listing 11.7 Get-RSS function

Listing 11.8 Get-RSSMenu function
POWERSHELL AND THE INTERNET 363

By default, it downloads the RSS feed for the PowerShell blog and shows the three
most recent entries. (Of course, you can override both the blog and the number of
items to show.) Here’s what it looks like when we run it:

PS (1) > Get-RSSMenu
0 - Are ScriptBlock parameters implemented for functions?
1 - Revisiting: Listing all the COM automation PROGIDs
2 - How can a script tell what directory it was run from?

Enter a number from 0 to 2 or q to quit: 0
Opening http://blogs.msdn.com/powershell/archive/2006/07/08/6596
60.aspx

Enter a number [0-2] or q to quit: q
PS (2) >

It displays the three most recent items from the blog. We select item 0 and hit Enter.
The function displays the URL and then invokes explorer.exe on the URL. This
will cause a browser window to pop up (or a new tab might open in an existing
browser window if your default browser supports tabs like IE7 or Firefox).

Now that we know how to download web pages, what about serving pages? In the
next section, we’ll look at writing a web server in PowerShell.

11.2.3 Example: Writing a web server in PowerShell

In this example, we’ll build a small special-purpose web server in PowerShell. This
example is a good illustration of mixing and matching object and string processing. It
will also highlight some limitations in PowerShell because of the way the processing
has to be done.

Reviewing how a web server works

Let’s review how a web server (or any kind of network server for that matter) works.
From a web browser’s perspective, a network service is identified by a combination of
the host and port number. The host identifies the computer to connect to and the
port identifies the service on that computer. (We’re obviously leaving out a lot of
detail here.) A web server, on the other hand, needs to know only the port to “listen”
on. It listens for a request to connect to the service, sets up a connection to the
requesting client, performs some service on behalf of the client (typically returning
some information), and then closes the connection. The server decides what to do
based on either the URL of the requested service or the content of the request. In our
example, we’re going to look only at the URL.

The goal of this web server script is to process the URL it receives and evaluate it
as a simple expression. A successful evaluation will be displayed as a table in the web
page. Figure 11.2 shows what this will look like.

The expressions supported are limited to adding, subtracting, multiplying, or
dividing two numbers. If the expression isn’t valid, a “help” page will be displayed,
including a valid example URL as a link in the page. We’ll give our PowerShell web
364 CHAPTER 11 GETTING FANCY— .NET AND WINFORMS

server script a proper marketing-approved name: Invoke-Webserver.ps1. Here’s
what it looks like when we run the script:

PS (1) > Invoke-Webserver
Press any key to stop Web Server...
Connection at 7/16/2006 6:11:40 PM from 127.0.0.1:1260.
Expression: 3*5
Expression result: 15
Sent 105 bytes to 127.0.0.1:1260
Header sent
Sent 621 bytes to 127.0.0.1:1260
Stopping server...
Server stopped...
PS (2) >

We’ve included lots of status messages in the server to let the user know what’s going
on. On a “real” web server, these messages are typically written to a log file instead of
to the host.

The web server script

Listing 11.9 shows the script Invoke-Webserver.ps1, which consists of three
functions: one to generate an HTML document, one to send the response back to the
client, and one that describes that content of the response.

param($port=80)

[void][reflection.Assembly]::LoadWithPartialName(
 "System.Net.Sockets")

function html ($content,
 $title = " Example PowerShell Web Server Page")
{

Figure 11.2 The Results from evaluating an expression in the Power-

Shell web server. The expression "3*5" was extracted, evaluated, and

displayed in a table along with the date and time it was evaluated.

Listing 11.9 The script code for Invoke-WebServer.ps1

Set the portB

Load socket
libraryCHTML

generator
D

POWERSHELL AND THE INTERNET 365

 @"
 <html>
 <head>
 <title>$title</title>
 </head>
 <body>
 $content
 </body>

 </html>
"@
}

function SendResponse($sock, $string)
{
 if ($sock.Connected)
 {
 $bytesSent = $sock.Send(
[text.Encoding]::Ascii.GetBytes($string))
 if ($bytesSent -eq -1)
 {
 Write-Host ("Send failed to " + $sock.RemoteEndPoint)
 }
 else
 {
 Write-Host ("Sent $bytesSent bytes to " +
 $sock.RemoteEndPoint)
 }
 }
}

function SendHeader(
 [net.sockets.socket] $sock,
 $length,
 $statusCode = "200 OK",
 $mimeHeader="text/html",
 $httpVersion="HTTP/1.1"
)
{
 $response = "HTTP/1.1 $statusCode`r`nServer: " +
 "Localhost`r`nContent-Type: $mimeHeader`r`n" +
 "Accept-Ranges:bytes`r`nContent-Length: $length`r`n`r`n"
 SendResponse $sock $response
 write-host "Header sent"
}

$server = [System.Net.Sockets.TcpListener]$port
$server.Start()

$buffer = New-Object byte[] 1024

write-host "Press any key to stop Web Server..."

SendResponse functionE

SendHeader functionF

Start serverG

Allocate
receive bufferH
366 CHAPTER 11 GETTING FANCY— .NET AND WINFORMS

while($true)
{

 if ($host.ui.rawui.KeyAvailable)
 {
 write-host "Stopping server..."
 break

 }

 if($server.Pending())
 {
 $socket = $server.AcceptSocket()
 }

 if ($socket.Connected)
 {
 write-host ("Connection at {0} from {1}." -f
 (get-date), $socket.RemoteEndPoint)

 [void] $socket.Receive($buffer, $buffer.Length, '0')
 $received = [Text.Encoding]::Ascii.getString($buffer)

 $received = [regex]::split($received, "`r`n")
 $received = @($received -match "GET")[0]

 if ($received)
 {
 $expression = $received -replace "GET */" –replace
 'HTTP.*$' -replace '%20',' '

 if ($expression -match '[0-9.]+ *[-+*/%] *[0-9.]+')
 {
 write-host "Expression: $expression"
 $expressionResult = . {
 invoke-expression $expression
 trap {
 write-host "Expression failed: $_"
 "error"
 Continue
 }
 }
 write-host "Expression result: $expressionResult"

 $result = html @"
 <table border="2">
 <tr>
 <td>Expression</td>
 <td>$expression</td>
 </tr>
 <tr>
 <td>Result</td>

Start request loopI

Check for stop keyJ

1) Check request

1! Get
data

1@
Split
strings

1#Extract
expression

Evaluate
expression

1$

1% Format
result text
POWERSHELL AND THE INTERNET 367

 <td>$expressionResult</td>
 </tr>
 <tr>
 <td>Date</td>
 <td>$(get-date)</td>
 </tr>
 </table>
"@

 }
 else
 {
 $message = 'Type expression to evaluate like:'
 $link = '' +
 'http://localhost/3*5'
 $result = html @"
 <table border="2">
 <tr>
 <td>$message</td>
 <td>$link</td>
 </tr>
 <tr>
 <td>Date</td>
 <td>$(get-date)</td>
 </tr>
 </table>
"@
 }

 SendHeader $socket $result.Length
 SendResponse $socket $result
 }
 $socket.Close()
 }
 else
 {
 start-sleep -milli 100
 }
}

$server.Stop()
write-host "Server stopped..."

We begin by setting the port that the server listens on. The default is the default
port for a web server—port 80. If you want to run this script on a machine that’s
already running a web server such as IIS or Apache, you’ll have to choose another
port.

The socket library that we’ll need is not part of the default PowerShell environ-
ment, so we have to load it.

1% Format
result text

1^Format
error text

1& Send response

1* Close request

1(Sleep 100ms

2) Stop listener

B

c

368 CHAPTER 11 GETTING FANCY— .NET AND WINFORMS

Next we’ll define a function to generate an HTML document . We need more
control over the document than we’d get with ConvertTo-Html so we can’t just use
the cmdlet.

Serving web pages is a request/response protocol. SendResponse is a function
we’ll use to send the response back to the client. Note that these are byte-oriented APIs,
so we need to convert the response string to an array of bytes before we can send it.

Part of any response is the header that describes the content of the response. The
header includes things such as the version of the HTTP protocol being used, the
length of the content being sent, the status code of the request, and so on. We’ll wrap
all of this up into a function called SendHeader .

Now create the listener object and start the web server . We’ll need a buffer
to hold the data the comes from the client, so allocate the buffer and save it in
$buffer.

Then we begin the request loop . This is where the first version of PowerShell is
limited. Ideally, we’d like to wait for events and launch a scriptblock to service each
request on its own thread (up to some limit). Unfortunately, that can’t be done in
version 1 of PowerShell. Instead, we use a simple loop that polls to see if there is any-
thing that needs to be done.

Asynchronous event handling is not supported in the first version of Pow-
erShell. In fact, if you try to use it, the PowerShell runtime will detect it and
generate a fatal exception, killing your shell session. Yes, this is extreme.
The rationale is that it’s better to fail early and in an obvious way than allow
the program to continue in a corrupt state. We tried simply generating a
message, but people would miss it, and wonder why their script wasn’t
working. People don’t miss killing the session. They aren’t very happy
about it, but they notice.

So why prevent asynchronous events? PowerShell has no mechanism for
synchronizing access to objects. This means that there is no way to do reli-
able multithreaded programming. We expect to address this in a future ver-
sion of the interpreter. In the meantime, there are lots of things that use
synchronous events, and fortunately WinForms is one of them. We’ll look
at how this works in WinForms later on.

While polling, first we check to see whether there is a key available and stop if
there is. We want to do it this way instead of using Ctrl-C to interrupt the script,
because we want to be able to properly close the listener.

On each poll, we check to see whether there are any pending requests and service
them if there are . We get the data from the request into the buffer we created ear-
lier . Since we want to work with strings instead of bytes, we’ll convert the contents
of the buffer into a string.

Now get the HTTP request out of the text we received. This will look something like
“GET /3*5 HTTP/1.1”. The first part is the type of operation requested, which is called

D

E

F
G H

I

AUTHOR’S
NOTE

J

1)
1!
POWERSHELL AND THE INTERNET 369

the HTTP method. The next part is the URL, which is what we want to work with, and
finally the version of the HTTP protocol. We want to extract this text, but first we need
to split the request string into lines. In the HTTP protocol, lines are separated with the
<carriage return><newline> sequence. We’ll use the [regex]::Split() method
to do this. If we got a valid request then extract the expression out of the URL with reg-
ular expressions .

Notice that we’re very carefully validating the expression . This is because we’re
going to pass it to Invoke-Expression. And since Invoke-Expression can do
anything (like format your hard drive), we need to be really, really, really careful
about validating data from an untrusted source such as a web browser. Really careful!

Now let’s do something a bit tricky . We’ll call Invoke-Expression to do the
evaluation, but we’re doing it in a scriptblock. In that scriptblock, we’re defining a
trap handler. If there is a problem with the expression (such as division by zero) the
trap statement will catch the exception, record the error, and return a default value.
This useful pattern is a simple way to guarantee a valid value is returned.

We’ll format the HTML table that used to display the result by using string expan-
sion in a here-string. This makes constructing the HTML fairly simple and direct.

And likewise in the invalid expression case, we’ll format a table to display the hint
and the example link . Notice that we’re hard-coding the example host to be
localhost. We’re assuming that you’re running the server and the client on the
same computer.

Finally, send the response header and content . Most of the default values for
SendHeader are fine, so the call is pretty simple. When we’re done servicing this
request, we close the connection to this client .

Something to keep in mind is that we’re polling for activity. If we poll as fast as we
can, we’ll waste a lot of CPU and interfere with other activities on this computer. To
avoid this, we’ll sleep for 100 milliseconds on each pooling loop .

Eventually we’ll exit the service loop because the user pressed a key requesting that
the server be stopped. We’ll stop the listener, and we’re done .

That’s the end of our web server script. We’ve written a complete web server that
serves dynamically created pages in less than 200 lines of PowerShell script. And,
while it’s not by any means a production-worthy application, it illustrates that Pow-
erShell can be used in scenarios that are normally considered outside the range of a
shell language. This is largely possible because of the power of the .NET framework.

The corollary to this is that because PowerShell is part of the .NET ecosys-
tem, as Microsoft (and third parties) add new capabilities to the .NET eco-
system, PowerShell benefits directly.

This example also illustrates a number of useful techniques for converting between
data formats, generating HTML, and so on.

So far we’ve written scripts that act as web clients and then a script that acts as a web
server. At this point, the next logical step is to write a script that acts as an operating

1@

1#
1$

1$

1%

1^

1&

1*

1(

2)

AUTHOR’S
NOTE
370 CHAPTER 11 GETTING FANCY— .NET AND WINFORMS

system kernel. In the next section, we’ll look at replacing portions of the Windows ker-
nel with PowerShell scripts. Okay—I am totally lying to you. Sorry. What we’re really
going to talk about is writing graphical client applications. Not as exotic as an operat-
ing system kernel, but a great deal more practical.

11.3 POWERSHELL AND
GRAPHICAL USER INTERFACES

The full name of the PowerShell package is Windows PowerShell. In this section,
we’ll look at the “Windows” part of the name. (The name is actually because Power-
Shell is part of the Windows product group. But we can do GUI programming with
PowerShell, as we’ll see in ths section.)

One of the earliest successful scripting environments was something called TCL/
TK. TCL stands for Tool Command Language. It was intended to be a standard script-
ing language that could be used to automate systems. (Hmm. This sounds familiar!)
Its biggest success, however, was TK, which was (and still is) a toolkit for building
graphical applications with scripts. The ability to write a basic graphical application
in a few dozen lines of code was wildly popular. This same kind of thing can be done
in PowerShell using the .NET Windows Forms (WinForms) library. WinForms is a
framework and collection of utility classes for building forms-based graphical applica-
tions. Let’s review the basic structure of a WinForms application and then see how
we can build one using PowerShell.

11.3.1 WinForms basics

The core concepts in WinForms are controls, containers, properties, and events. A
control is an element in a user interface—buttons, list boxes, and so on. Most con-
trols, like buttons, are visible controls that you interact with directly, but there are
some controls, such as timers, that aren’t visible but still play a part in the overall
user experience. Controls have to be laid out and organized to present a GUI. This is
where containers come in. Containers include things such as top-level forms, panels,
splitter panels, tabbed panels, and so on. Within a container, you can also specify a
layout manager. The layout manager determines how the controls are laid out within
the panel. (In TCL/TK, these were called geometry managers.) Properties are just
regular properties, except that they are used to set the visual appearance of a control.
You use them to set things such as the foreground and background colors or the font
of a control.

The final piece in the WinForms architecture is the event. Events are used to spec-
ify the behavior of a control both for specific actions, such as when a user clicks on
the “Do It” button, as well as when the container is moved or resized and the control
has to take some action. In PowerShell, an event corresponds to a scriptblock. If you
want a particular event to occur when a button is clicked, you attach a scriptblock to
the button click event.
POWERSHELL AND GRAPHICAL USER INTERFACES 371

When an EventHandler is invoked or fired, it’s passed at least two argu-
ments: the object that fired the event and any arguments that are specific
to that event. The signature of the method that is used to invoke an event
handler looks like:

Void Invoke(System.Object, System.EventArgs)

Writing event handlers in WinForms is such a common pattern that Pow-
erShell doesn’t require you to explicitly define these arguments for script-
blocks used as event handlers. Instead, we use the automatic variables
$this and $_ to pass the System.EventHandler arguments: $this
contains a reference to the object that generated the event and $_ holds any
event arguments that might have been passed. Note that these arguments
get used a lot in PowerShell; as we’ll see in the examples, dynamic scoping
frequently makes using these variable unnecessary (but they have to be de-
fined anyway to match the EventHandler signature).

These concepts are best illustrated through an example.

11.3.2 Example: "My first form"

We’ll now look at the simplest WinForms example. This is the example we saw in
chapter 1. The code is shown in listing 11.10:

[void][reflection.assembly]::LoadWithPartialName(
 "System.Windows.Forms")
$form = New-Object Windows.Forms.Form
$form.Text = "My First Form"
$button = New-Object Windows.Forms.Button
$button.text="Push Me!"
$button.Dock="fill"
$button.add_click({$form.close()})
$form.controls.add($button)
$form.Add_Shown({$form.Activate()})
$form.ShowDialog()

Since it’s short enough to type at the command line, let’s go through the code interac-
tively. First we have to load the WinForms assembly, since it’s not loaded into Power-
Shell by default.

PS (1) > [void][reflection.assembly]::LoadWithPartialName(
>> "System.Windows.Forms")
>>

All applications have to have a top-level form, so we’ll create one and save it in the
variable $form.

PS (2) > $form = New-Object Windows.Forms.Form

AUTHOR’S
NOTE

Listing 11.10 The script code for WinForms example
372 CHAPTER 11 GETTING FANCY— .NET AND WINFORMS

We’ll set the Text property on the form so that the title bar will display “My First
Form”.

PS (3) > $form.Text = "My First Form"

Next we create a button and set the text to display in the button to “Push Me!”.

PS (4) > $button = New-Object Windows.Forms.Button
PS (5) > $button.text="Push Me!"

We’ll use the Dock property on the button control to tell the form layout manager
that we want the button to fill the entire form.

PS (6) > $button.Dock="fill"

Now we need to add a behavior to the button. When we click the button, we want
the form to close. We add this behavior by binding a scriptblock to the Click event
on the button. Events are bound using special methods that take the form
add_<eventName>.

PS (7) > $button.add_Click({$form.close()})

Be careful getting all of the parentheses and braces matched up. In the scriptblock
we’re adding, we’ll call the Close() method on the form, which will “end” the appli-
cation.

If you’ve programmed with WinForms in other languages such as C# or Vi-
sual Basic, you may be curious about how this works. (If not, feel free to
skip this note.) The add_Click() function corresponds to the Click
event described in the MSDN documentation. PowerShell doesn’t support
the “+=” notation for adding events so we have to use the corresponding
add_Click() method. Now in general, events require an instance of Sys-
tem.Delegate. The Click event in particular requires a subclass of Sys-
tem.Delegate called System.EventHandler. While scriptblocks are
not derived from that type, PowerShell knows how to automatically convert
a scriptblock into an EventHandler object so it all works seamlessly. Un-
fortunately, the only subclass of delegate we support is Sys-
tem.EventHandler, and there are a lot of other types that derive from
System.Delegate. This means that, in version 1 of PowerShell, you can’t
use scriptblocks with those other event types. Well, that’s not quite true: It
is possible to generate arbitrary delegate code for scriptblocks, but it requires
some pathologically advanced scripting. However, for most scenarios you’re
likely to encounter, support for System.EventHandler is sufficient.

Now we need to add our button to the form. This is done by calling the Add()
method on the Controls member of the form.

AUTHOR’S
NOTE
POWERSHELL AND GRAPHICAL USER INTERFACES 373

PS (8) > $form.Controls.add($button)

When the form is first displayed, we want to make it the active form. That’s what the
next line does. It sets up an event handler that will activate the form when it’s first
shown.

PS (9) > $form.Add_Shown({$form.Activate()})

And now we want to show the form we’ve built. There are two methods we could
call. The first—Show()—displays the form and returns immediately. Unfortunately,
this also means that the form closes immediately as well. This is because the form is
running on the same thread as the command. When the command ends, so does the
form. The way to get around this is to use the ShowDialog() method. This shows
the form and then waits until the form is closed. This is what we want to do here. We
call this method and PowerShell will seem to freeze.

PS (9) > $form.ShowDialog()

Somewhere on the desktop, a form that looks like fig-
ure 11.3 will appear.

Once we locate the window, we can resize it and
move it around and everything works fine. Finally,
we’ll click the “Push Me!” button, causing the form to
disappear, and control will return to the PowerShell
session. We’ll see something like:

Cancel
PS (10) >

The word “Cancel” is the return value from the Show-
Dialog() methods. Dialogs usually return a result
such as Cancel or OK. Since we called ShowDia-
log(), we get a dialog reply.

11.3.3 Example: Simple dialog

Now let’s look at something a bit more sophisticated. Since we’re displaying the form
like a dialog, let’s make it look more like a normal Windows dialog box. We’ll build a
form with three elements this time—a label and two buttons, “OK” and “Cancel”.
This form will look the image in figure 11.4:

Figure 11.4

This is what the dialog created by the

Get-OKCancel script looks like. It dis-

plays a simple message and two but-

tons, "OK" and "Cancel".

Figure 11.3 This is what the

"my first form" Windows Form

looks like. It consists of a sin-

gle button control that fills the

form when it is resized.
374 CHAPTER 11 GETTING FANCY— .NET AND WINFORMS

The code for this function is shown in listing 11.11.

function Get-OkCancel
{
 param ($question=
 "Is the answer to Life the Universe and Everything 42?")

 function point ($x,$y)
 {
 New-Object Drawing.Point $x,$y
 }

 [reflection.assembly]::LoadWithPartialName(
 "System.Drawing") > $null
 [reflection.assembly]::LoadWithPartialName(
 "System.Windows.Forms") > $null

 $form = New-Object Windows.Forms.Form
 $form.Text = "Pick OK or Cancel"
 $form.Size = point 400 200

 $label = New-Object Windows.Forms.Label
 $label.Text = $question
 $label.Location = point 50 50
 $label.Size = point 350 50
 $label.Anchor="top"

 $ok = New-Object Windows.Forms.Button
 $ok.text="OK"
 $ok.Location = point 50 120
 $ok.Anchor="bottom,left"
 $ok.add_click({
 $form.DialogResult = "OK"
 $form.close()
 })

 $cancel = New-Object Windows.Forms.Button
 $cancel.text="Cancel"
 $cancel.Location = point 275 120
 $cancel.Anchor="bottom,right"
 $cancel.add_click({
 $form.DialogResult = "Cancel"
 $form.close()
 })

 $form.controls.addRange(($label,$ok,$cancel))
 $form.Add_Shown({$form.Activate()})
 $form.ShowDialog()
}

Listing 11.11 The Get-OkCancel WinForms example

Define
parameters

B

Point helper functionC

Load drawing
assembly

D

Create top-level
form

E

Create labelF

Create OK
button

G

Create cancel
button

H

Add controlsI
POWERSHELL AND GRAPHICAL USER INTERFACES 375

This function takes one parameter —the question to ask—with a default. When
setting size and location of controls on the form, we need to use point objects, so we’ll
create a local helper function to simplify things.

We need to load both the Windows Forms assembly and the Drawing assem-
bly so we can create an instance of the point class. Although the classes defined in
the forms library refer to the classes in the Drawing library, PowerShell will only find
types in the explicitly loaded assemblies.

As in the previous example, we create the top-level form and set the caption, but
this time, we’re also setting the size of the form.

Next we create the label , setting both the size and the location. We also set the
Anchor property to top; this tells the layout manager to keep the label control
“anchored” to the top of the form control. No matter what the size of the control is,
the label will always stay the same distance from the top of the form.

Then we create the OK button , setting the caption and location. Again, we’re
using the Anchor property to tell the layout manager to maintain the button’s posi-
tion relative to the bottom and left edges of the form when resizing the form. We also
defined the click handler scriptblock. This sets the DialogResult property to
“OK”. When the form is closed, this is the value that will be returned from the call to
ShowDialog().

Finally, we defined the Cancel button , this time anchoring it to the lower right
side of the form and adding a click handler that will cause ShowDialog() to return
“Cancel” when the form is closed.

The last step is to add all of the controls to the form and call ShowDialog() .
As before, the window may be hidden on your desktop when it appears.

There are a couple things to note about this example. The first is that figuring
out the size and location for each control is annoying. Calculation or a lot of trial
and error is needed. This is what the Form editor in an IDE such as Visual Studio
takes care of for you. If you look at the code, the form editor generates mostly prop-
erty assignments.

The second thing is a lot of code is almost identical. The definition for each of the
buttons is the same except for the label and the anchor position. Again, this is some-
thing that the form editor takes care of for you. Unfortunately, there is no form edi-
tor available for PowerShell at the time of this writing. Fortunately, we have a high-
level scripting language we can use to build a library of functions to simplify this.
And we’ll also look at using smarter layout managers that do more of the work for
you. In the next section, we’ll introduce a WinForms library that addresses a number
of these issues.

11.3.4 Example: A WinForms library

There are a lot of elements in building a Windows Forms application that are
repeated over and over. If you’re working in an environment such as Visual Studio,
the environment takes care of generating the boilerplate code. But if you’re building a

B

C
D

E

F

G

H

I

376 CHAPTER 11 GETTING FANCY— .NET AND WINFORMS

form using Notepad, you need to be a bit more clever to avoid unnecessary work.
Let’s build a library of WinForms convenience functions that can be dot-sourced into
a script. We’ll call this library winform.ps1. If this file is placed somewhere in your
path then you can use it by including the line

. winform

at the beginning of your script. The code for this helper library is shown in listing 11.12.

[void][reflection.assembly]::LoadWithPartialName(
 "System.Drawing")
[void][reflection.assembly]::LoadWithPartialName(
 "System.Windows.Forms")

function Point {New-Object System.Drawing.Point $args}
function Size {New-Object System.Drawing.Size $args}
function Form ($Control,$Properties)
{
 $c = New-Object "Windows.Forms.$control"
 if ($properties)
 {
 foreach ($prop in $properties.keys)
 {
 $c.$prop = $properties[$prop]
 }
 }
 $c
}
function Drawing ($control,$constructor,$properties)
{
 $c = new-object "Drawing.$control" $constructor

 if ($properties.count)
 {
 foreach ($prop in $properties.keys)
 {
 $c.$prop = $properties[$prop]
 }
 }
 $c
}

function RightEdge ($x, $offset=1)
{
 $x.Location.X + $x.Size.Width + $offset
}
function LeftEdge ($x)
{
 $x.Location.X
}
function BottomEdge ($x, $offset=1)

Listing 11.12 The winform.ps1 utility library

B Load the
assemblies

Drawing
helpers

C

Form helper
functionD

E Initialize form
object

F Drawing helper
function

Form posi-
tioning helpers

G

POWERSHELL AND GRAPHICAL USER INTERFACES 377

{
 $x.Location.Y + $x.Size.Height + $offset
}
function TopEdge ($x) {
 $x.Location.Y
}

function Message (

$string,
$title='PowerShell Message')
{
 [windows.forms.messagebox]::Show($string, $title)
}

function New-Menustrip ($Form, [scriptblock] $Menu)
{
 $ms = Form MenuStrip
 [void]$ms.Items.AddRange((&$menu))
 $form.MainMenuStrip = $ms
 $ms
}
function New-Menu($Name, [scriptblock] $Items)
{
 $menu = Form ToolStripMenuItem @{Text = $name}
 [void] $menu.DropDownItems.AddRange((&$items))
 $menu
}
function New-MenuItem($Name, $Action)
{
 $item = Form ToolStripMenuItem @{Text = $name}
 [void] $item.Add_Click($action)
 $item
}
function New-Separator { Form ToolStripSeparator }

function Style ($RowOrColumn="row",$Percent=-1)
{
 if ($Percent -eq -1)
 {
 $typeArgs = "AutoSize"
 }
 else
 {
 $typeArgs = "Percent",$percent
 }
 New-Object Windows.Forms.${RowOrColumn}Style $typeArgs
}

MessageBox
helper function

H

MenuStrip
helper function

I

Menu helper
function

J

1) MenuItem
helper function

1! Menu Separator
helper function

1@
Layout Style
helper function
378 CHAPTER 11 GETTING FANCY— .NET AND WINFORMS

The most important thing a WinForms library should do is make sure that the necessary
assemblies are loaded . Note that “loading” the assembly multiple times is harmless.

Next we define some convenience functions for creating common Drawing
objects: point and size. These functions, like many of the helpers, just hide the long
type names used to construct the objects.

The function Form is the function we’ll use most often when creating Win-
Form objects. It takes as arguments the name of the WinForms class to create and an
optional hashtable of properties to create. If the properties hashtable is provided
the function will iterate over the keys in the hashtable, setting the property on the
object named by the key to the value associated with that key. This makes object ini-
tialization very easy. Drawing is a similar function for creating and initializing
System.Drawing objects.

Next is a series of convenience functions that can be used to calculate coordi-
nates for a Form object. These are handy when we’re explicitly laying out the controls
on a form.

The Message function is a simple utility for popping up a message box.
Next is a series of functions that work together to simplify building menus. The

New-MenuStrip function allows us to create and add a menu strip to a form.
Notice that it takes a scriptblock for its second argument. This is the “little-lan-
guages” concept mentioned in chapter 8. This function expects that when the script-
block is executed, it will return a collection of menu objects that the function can add
to the menu.

We’ll use the New-Menu function to create these menu objects. This function
also takes a scriptblock that should return a collection of MenuItem objects. These
MenuItem objects will be added to the current Menu object. Finally, MenuItem
objects are created with the New-MenuItem function . This function takes a name
and an action in the form of a scriptblock. When this menu item is selected, the
action scriptblock will be executed. One more helper function for building menus,
the New-Separator function , is used to add separators between menu items.

The last function in this library is Style which is used to produce the row and
column style objects used by the layout managers that we’ll use later in this chapter.

Although there doesn’t seem to be much to this library, it can significantly sim-
plify building a forms applications. In the next section, we’ll use it to build a signifi-
cant application.

11.3.5 Example: A simple calculator

In this section, we’ll build our own replacement for the Windows calculator applet.
We’ll use this exercise to show how the WinForms library can help construct an
application. We’ll also use this example to introduce the table layout manager. In the
process, we’ll show how some of PowerShell’s features can be used to create flexible
application architecture.

B
C

D

E

F

G

H

I

J

1)

1!
1@
POWERSHELL AND GRAPHICAL USER INTERFACES 379

At the end of the exercise, we want to build
an application that looks like what’s shown in
Figure 11.5.

It’s not as fancy as the calculator that ships
with Windows, but it has more functions and,
since it’s a script, we can add our own custom
features when we want to. The basic structure
includes a simple File menu with two actions—
Clear and Exit. Next there is a text box that will
hold the value of the most recent calculation.
Finally, there are all of the buttons in the calcu-
lator. This is where the table lay out manager is
important. We don’t want to have to lay out each
of these buttons by hand. (Even in an interface
builder such as Visual Studio, this would be
tedious.) The TableLayoutPanel allows us to
lay out a grid of controls. It has a ColumnCount
property that allows us to control the number of
columns that are used in laying out the buttons. We’ll design the application so that
by simply changing this value, we can lay out our buttons in two columns, producing
a tall, skinny calculator, or set it to 10 columns, producing a shorter, wider layout. The
code is shown in listing 11.13.

. winform

$script:op = ''
$script:doClear = $false
function clr { $result.text = 0 }
[decimal] $script:value = 0

$handleDigit = {
 if ($doClear)
 {
 $result.text = 0
 $script:doClear = $false
 }

 $key = $this.text
 $current = $result.Text
 if ($current -match '^0$|NaN|Infinity')
 {
 $result.text = $key
 } else {
 if ($key -ne '.' -or $current -notmatch '\.')
 {

Listing 11.13 The PowerShell graphical calculator

Load WinForm
libraryB

Set up
functions

C

Set up operator
scriptblock

D

Figure 11.5 What the PowerShell

calculator example form looks like.

This example uses the WinForm li-

brary to construct an extensible

graphical calculator application.
380 CHAPTER 11 GETTING FANCY— .NET AND WINFORMS

 $result.Text += $key
 }
 }
}

$handleOp = {
 $script:value = $result.text
 $script:op = $this.text

 $script:doClear = $true
}

$keys = (
 @{name='7'; action=$handleDigit},
 @{name='8'; action=$handleDigit},
 @{name='9'; action=$handleDigit},
 @{name='/'; action = $handleOp},
 @{name='SQRT'; action = {
 trap { $resultl.Text = 0; continue }
 $result.Text = [math]::sqrt([decimal] $result.Text)

 }
 },
 @{name='4'; action=$handleDigit},
 @{name='5'; action=$handleDigit},
 @{name='6'; action=$handleDigit},
 @{name='*'; action = $handleOp},
 @{name='Clr'; action = $function:clr},
 @{name='1'; action=$handleDigit},
 @{name='2'; action=$handleDigit},
 @{name='3'; action=$handleDigit},
 @{name='-'; action = $handleOp},
 @{name='1/x'; action = {
 trap { $resultl.Text = 0; continue }
 $val = [decimal] $result.Text
 if ($val -ne 0)
 {
 $result.Text = 1.0 / $val
 }
 }
 },
 @{name='0'; action=$handleDigit},
 @{name='+/-'; action = {
 trap { $resultl.Text = 0; continue }
 $result.Text = - ([decimal] $result.Text)
 }
 },
 @{name='.'; action=$handleDigit},
 @{name='+'; action = $handleOp},
 @{name='='; action = {

 $key = $this.text

Set up Number
scriptblock

E

The key/action
table

F

The Sqr
handler

G

The “=”
handler

H

POWERSHELL AND GRAPHICAL USER INTERFACES 381

 trap { message "error: $key" "error: $key"; continue }
 $operand = [decimal] $result.text
 $result.text = invoke-expression "`$value $op `$operand"
 }
 },
 @{name='%'; action = $handleOp},
 @{name='sin'; action = {
 trap { $resultl.Text = 0; continue }

 $result.Text = [math]::sin([decimal] $result.Text)
 }
 },
 @{name='cos'; action = {
 trap { $resultl.Text = 0; continue }
 $result.Text = [math]::cos([decimal] $result.Text)
 }
 },
 @{name='tan'; action = {
 trap { $resultl.Text = 0; continue }
 $result.Text = [math]::tan([decimal] $result.Text)
 }
 },
 @{name='int'; action = {
 trap { $resultl.Text = 0; continue }
 $result.Text = [int] $result.Text
 }
 },
 @{name='Sqr'; action = {
 $result.Text = [double]$result.Text * [double]$result.text
 }
 },
 @{name='Quit'; action = {$form.Close()}}
)

$columns = 5

$form = Form Form @{
 Text = "PowerShell Calculator"
 TopLevel = $true
 Padding=5
}

$table = form TableLayoutPanel @{
 ColumnCount = 1
 Dock="fill"
}
$form.controls.add($table)

$menu = new-menustrip $form {
 new-menu File {
 new-menuitem "Clear" { clr }
 new-separator
 new-menuitem Quit { $form.Close() }

Number of
columns

I

Top-level
layout

J

1) Define
menus
382 CHAPTER 11 GETTING FANCY— .NET AND WINFORMS

 }
}
$table.controls.add($menu)

$cfont = New-Object Drawing.Font
 'Lucida Console',10.0,Regular,Point,0

$script:result = form TextBox @{

 Dock="fill"
 Font = $cfont
 Text = 0
}
$table.Controls.Add($result)

$buttons = form TableLayoutPanel @{
 ColumnCount = $columns
 Dock = "fill"
}

foreach ($key in $keys) {
 $b = form button @{
 text=$key.name
 font = $cfont;
 size = size 50 30
 }
 $b.add_Click($key.action)
 $buttons.controls.Add($b)
}
$table.Controls.Add($buttons)

$height = ([math]::ceiling($keys.count / $columns)) *
40 + 100
$width = $columns * 58 + 10

$result.size = size ($width - 10) $result.size.height
$form.size = size $width $height
$form.Add_Shown({$form.Activate()})
[void] $form.ShowDialog()

We start our calculator script by loading the forms library. Next we’ll set up some
variables and functions that we’ll use later in the script. The clr function will be
used for setting the calculator back to zero. The variable $op is used for holding the
pending operation. This is the operation that the user has clicked, but it won’t be exe-
cuted until “=”or another operation is selected.

The basic logic for handling a number key click is the same, so we’ll build a
common scriptblock for it. This scriptblock will incrementally append numbers to
the display, resetting it when appropriate.

1! Set font

1@
Create display
text box

1# Button
layout panel

1$ Bind key
actions

1% Set form
size

B
C

D

POWERSHELL AND GRAPHICAL USER INTERFACES 383

Pressing one of the operation keys such as + or - is also handed in pretty much the
same way for all of the keys, so again we’ll define a common scriptblock to handle
it. This scriptblock saves the current calculated value as well as the operation to per-
form, and then allows the user to enter the next value in the calculation.

The next step is to build a table that holds all of the actions that will be associ-
ated with each key. This table will be used to bind these actions to all of the button
controls. It’s defined as an array of hashtables. Each hashtable has a member name
that specifies the name to put on the key and an action to perform when the key is
pressed. This action is implemented by a scriptblock. Most of the keys will call either
the handleDigit scriptblock or the handleOp scriptblock, but some will have
their custom scriptblock.

For example, the “Sqr” key implements the square root function. It uses the
static method [math]::sqrt() to do the calculation. Since having your calculator
throw exceptions is not very friendly, we also add a trap handler to catch and discard
any exceptions that might occur when calculating the square root. We’ll see this pat-
tern again in some of the other trap handlers. (See chapter 9 for information on
handing exceptions with the trap statement.)

The scriptblock associated with the “=” key handles executing actual calculation .
It builds an expression that will generate the result we want using the $value and $op
variables. This expression is then evaluated using the Invoke-Expression cmdlet.
(See chapter 13 for cautions about using Invoke-Expression.)

Now that we’ve defined all of the logic for the calculator, let’s build the form.
Rather than explicitly laying out where all of the controls go, we’ll use the table lay-
out manager, which allows us to lay out a series of controls onto a grid. By default,
we’ll set the number of columns to 5.

We’ll create the top-level TableLayoutPanel control to lay out the menu,
display, and button elements.

Now we need to define the menus . Here we’re using the menu helper functions
from the winform library. As mentioned previously, these functions use the “little-
language” technique described in chapter 8. The new-menustrip function takes a
scriptblock which will return a collection of menus to add to the menu strip. Similarly,
the new-menu function will take a scriptblock that should return a collection of menu
items to add to the calling menu. Finally, the new-menuitem scriptblock takes a
name and scriptblock to use as an action and returns a menu item to the caller.

We’ll pick a specific font to use for the display and the buttons, and then build
the TextBox control to display the current value.

Finally, we’ll create a second TableLayoutPanel to hold the calculator but-
tons. We iterate through the table of keys created in step , creating a new button
for each entry in the table . We set attributes on this button control, attach the
scriptblock to it, and add it to the table.

E

F

G

H

I
J

1)

1!
1@

1#
F

1$
384 CHAPTER 11 GETTING FANCY— .NET AND WINFORMS

The last step is to do the math to figure out the best size for the form, set the
form, and display it using the ShowDialog() method.

And there you have it, a basic calculator application. In fact, this isn’t a very good
calculator at all, it doesn’t handle order of operations; it doesn’t even chain
calculations properly or handle the keyboard events. But it does demonstrate a
number of useful techniques, both in PowerShell and in WinForms for building
graphical applications.

11.3.6 Example: Displaying data

A common activity in user interface programming is displaying collections of data.
The Windows Forms framework makes this easy through a feature called data bind-
ing. Data binding is the ability to tell a control such as a grid to use a collection of
objects as the data it should display. The programmer doesn’t have to write any code;
the control figures everything out by examining the data. PowerShell objects (PSOb-
jects) also support data binding, so we can take the output from a pipeline and use
that as the data source for a control. In this section, we’ll work through a short script
that does exactly this. We’ll take the output of the Get-Process cmdlet and display
it in a grid on a form. In the process, we’ll look at a additional features of the Table-
LayoutPanel. The resulting form is shown in figure 11.6.

The code that implements this form is shown in listing 11.14.

. winform
$form = Form Form @{
 AutoSize=$true
 Text = "PowerShell Graphical Process Viewer"
}

$sortCriteria="ProcessName"
function update ($sortCriteria="ProcessName") {

1%

Figure 11.6 What the PowerShell graphics process viewer form looks like. Clicking

on any of the buttons will cause the data to be refreshed and sorted based on the

property named by the button.

Listing 11.14 The PowerShell graphical process viewer

Basic setupB

Update scriptblockC
POWERSHELL AND GRAPHICAL USER INTERFACES 385

 $grid.DataSource = New-Object Collections.ArrayList `
 (,(gps | sort $sortCriteria |
select name,id,handles,workingset,cpu))
 $grid.CaptionText = "Process Data Sorted by $sortCriteria"
 $status.Text =
 "Last Updated on $(get-date | out-string)" -replace "`n"
}

$table = form TableLayoutPanel @{
 columncount=6
 Dock="Fill"
 AutoSizeMode = "GrowOnly"; AutoSize = $true
}
$form.Controls.Add($table)

[void] $table.RowStyles.Add((style))
[void] $table.RowStyles.Add((style -percent 50))
1..3 | %{
 [void] $table.RowStyles.Add((style))
}

1..4 | %{
 [void] $table.ColumnStyles.Add((style column 17))
}

$menu = new-menustrip $form {
 new-menu File {
 new-menuitem "Update" { update }
 new-separator
 new-menuitem "Quit" { $form.Close() }
 }
 new-menu Help {
 new-menuitem "About" {
 message (
 "PowerShell Process Viewer`n`n" +
 "Windows Forms Demo Applet`n" +
 "From Windows PowerShell in Action`n" +
 "Manning Publications Co. 2006"
)
 }
 }
}
$table.controls.add($menu)
$table.SetColumnSpan($menu, 6)

$grid = Form DataGrid @{
 Dock="fill"
 CaptionText = "PowerShell Graphical Process Viewer"
}
$table.Controls.Add($grid);
$table.SetColumnSpan($grid, 6)

function New-Button($label,$action)

Create
layout panel

D

Set stylesE

Create menusF

Create grid
control

G

New-button helperH
386 CHAPTER 11 GETTING FANCY— .NET AND WINFORMS

{
 $b = form button @{text=$label; anchor = "left,right" }
 $b.add_Click($action);
 $table.Controls.Add($b);
}
New-Button "Name" {update ProcessName}
New-Button "Id" {update Id}
New-Button "Handles" {update Handles}

New-Button "WorkingSet (WS)" {update WS}
New-Button "CPU" {update cpu}

$status = form label @{
 dock="fill"
 flatstyle="popup"
 borderstyle="fixed3d"
}
$table.Controls.Add($status);
$table.SetColumnSpan($status, 6)

Update
$form.Add_Shown({$form.Activate()})
[void] $form.ShowDialog();

We begin the process viewer example with the standard preamble , where we load
the winform library and create the top-level form. Next we create the scriptblock
that will be used to update the form when a button is clicked. This is also used to
update the form when it is first displayed.

We create a TableLayoutPanel to lay out all of our controls. We’ll use the
Style helper function in the winform library to set up how the form will be
resized. We want the grid to occupy most of the form space with the buttons and
menus remaining at the top and bottom.

Next we create the menus , add them to the form, and create the actual Data-
Grid control that will be used to display the information.

We’re going to have a bunch of buttons at the bottom, so we’ll define a helper
function New-Button so we don’t have to repeat the code. We use this function
to create each of the operation buttons. The last thing to do is run the update script-
block to fill the gird with an initial collection of data values and then display the
form. And that’s the end of the grid example.

11.3.7 Example: Using the GDI+ to do graphics

The last example in this chapter involves actual graphics programming. All of the ear-
lier WinForms examples have depended on the controls to do the drawing. Now we’ll
look at drawing directly with PowerShell. In the process, we’ll see how to use the
paint and timer events on a Form object. We’ll also touch on some of the more
sophisticated graphics feature in .NET.

Make buttons

Show form

B
C

D
E

F
G

H

POWERSHELL AND GRAPHICAL USER INTERFACES 387

Graphics programming in Windows (at least
in the post XP/Server 2003) world is done using
a set of APIs called the GDI+. GDI stands for
graphics device interface. It’s the abstraction that
Windows uses to hide the details of working with
specific graphics hardware. In .NET, this API sur-
faces through the System.Drawing collection
of namespaces. The particular example is a script
that draws a spiral on a form. This form is shown
in figure 11.7.

The script draws a spiral out from the center
of the form. It periodically redraws the form,
changing the foreground and background colors
on each iteration. This redraw is handled by the
Timer event on the form. Resizing the form will
also trigger the Paint event to cause the spiral to
be redrawn.

The script takes parameters that allow you to
specify the opacity (or translucency) of the form,
as well as its initial size and the amount of detail
used in drawing the form. See listing 11.15.

param(
 $opacity=1.0,
 $increment=50,
 $numRevs=20,
 $size=(500,500)
)

if ($args) {
 throw 'param($opacity=1.0,$increment=50,$numRevs=20)'
}

. winform

$colors = .{$args} red blue yellow green orange `
 black cyan teal white purple gray
$index=0
$color = $colors[$index++]

$form = Form Form @{
 TopMost=$true
 Opacity=$opacity
 Size=size $size[0] $size[1]
}

Listing 11.15 The annotated PwrSpiral.ps1 script.

Script parametersB

Check
extra args

C

Load WinForm
library

D

E Set up colors

F Build top-level
form

Figure 11.7 Screen capture of the

PwrSpiral GDI+ example form. This

form is drawn by a PowerShell

script. It will redraw itself in a differ-

ent color every 5 seconds. It can

also be started such that it will be

displayed as a transparent window.
388 CHAPTER 11 GETTING FANCY— .NET AND WINFORMS

$myBrush = Drawing SolidBrush $color
$pen = Drawing pen black @{Width=3}
$rec = Drawing Rectangle 0,0,200,200

function Spiral($grfx)
{
 $cx, $cy =$Form.ClientRectangle.Width,
 $Form.ClientRectangle.Height

 $iNumPoints = $numRevs * 2 * ($cx+$cy)
 $cx = $cx/2
 $cy = $cy/2
 $np = $iNumPoints/$numRevs
 $fAngle = $i*2.0*3.14159265 / $np
 $fScale = 1.0 - $i / $iNumPoints
 $x,$y = ($cx * (1.0 + $fScale * [math]::cos($fAngle))),
 ($cy * (1.0 + $fScale * [math]::Sin($fAngle)))

 for ($i=0; $i -lt $iNumPoints; $i += 50)
 {
 $fAngle = $i*2.0*[math]::pi / $np
 $fScale = 1.0 - $i / $iNumPoints
 $ox,$oy,$x,$y = $x,$y,
 ($cx * (1.0 + $fScale * [math]::cos($fAngle))),
 ($cy * (1.0 + $fScale * [math]::Sin($fAngle)))
 $grfx.DrawLine($pen, $ox, $oy, $x, $y)
 }
}

$handler = {
 $rec.width = $form.size.width
 $rec.height = $form.size.height
 $myBrush.Color = $color
 $formGraphics = $form.CreateGraphics()
 $formGraphics.FillRectangle($myBrush, $rec)
 $form.Text = "Color: $color".ToUpper()
 $color = $colors[$index++]
 $index %= $colors.Length

 $pen.Color = $color
 Spiral $formGraphics
 $formGraphics.Dispose()
}

$timer = New-Object system.windows.forms.timer
$timer.interval = 5000
$timer.add_Tick($handler)
$timer.Start()

$Form.add_paint($handler)

$form.Add_Shown({$form.Activate()})
[void] $form.ShowDialog()

F Build top-level
form

Spiral functionG

H Initialize
values

I Draw
spiral

J Timer event
handler

1) Set up
timer event

1! Add paint
handler

1@ Show form
POWERSHELL AND GRAPHICAL USER INTERFACES 389

First define the parameters for the script (remember, the param statement always
has to be the first executable statement in the script). Opacity of a form is a built-in
capability in the GDI+, allowing for some cool visual effects. An opacity of 1 is a solid
form. The spiral is drawn using a series of line segments. The more segments there
are, the smoother the curve, but the longer it takes to draw. This is controlled by the
$increment parameter. The $numRevs parameter controls the number of revolu-
tions used in drawing the spiral. The spiral will always fill the form, so the higher the
number of revolutions, the closer together the curves will be.

Checking $args is a “trick” to check for extra parameters. If there are any
extra parameters to the script, an error will be generated.

Of course, we still need to load the basic assemblies and create a form to draw on,
so we load the usual winform utility library .

We want the spiral to be drawn in a different color on each iteration, so set up a
list of the colors to loop through. The $index variable is used to keep track of the
last color used.

And now we’ll create the objects we need. We’ll create a top-level form, passing
in the size and opacity arguments to the script. Then we’ll create a couple of drawing
objects—a brush to do the drawing and a rectangle to use for drawing the form back-
ground.

The Spiral function is the routine that does all of the drawing. It takes a
graphics context to draw on and then uses the information about the number of rev-
olutions and the increment to calculate the number of segments to draw.

Once we have all of the basic information—the number of points and the angle of
rotation—calculated , we loop , drawing each segment until the spiral is com-
plete. We’re using multivariable assignment in the loop to simplify the code and
speed things up a bit.

Next we’ll create a scriptblock that we can use as the event handler for trigger-
ing drawing the spiral. This handler creates the graphics object for drawing on the
form, fills it with the background color, then calls the Spiral routine to draw on the
graphics object.

With the basic pieces in place, we can now create the timer control and add it
to the form to trigger the redraws. The script sets up the timer control’s interval to
redraw the form every 5 seconds.

Any activity that triggers the paint event will cause the spiral to be redrawn.
For example, resizing the form will cause a new paint cycle.

Finally, we show the form , blocking it from view until it is closed.
This example shows additional uses of the scriptblock as a timer event handler as

well as using the [math] capabilities to do some fairly complex calculations. It’s not
a particularly practical application, but it give us the basics of how to write an appli-
cation that graphs a sequence of values. For example, we could extend the calculator
example from earlier in this chapter to do graphics. (We could, but we won’t. We’ll
leave this as a rainy-day exercise for the reader.)

B

C

D

E

F

G

H I

J

1)

1!

1@
390 CHAPTER 11 GETTING FANCY— .NET AND WINFORMS

11.4 SUMMARY

Chapter 11 covered a variety of application areas where PowerShell can be applied
because of its ability to access classes in the .NET frameworks. When a particular
application domain may not have adequate coverage through cmdlets (at least not
yet), if there is a .NET API for that area, the odds are good that PowerShell can be
used to script it. In the first part of this chapter we covered:

• The basic concepts in .NET and the common language runtime, including the
basics of assemblies and types.

• How to load assemblies into the PowerShell session and then how to find the
new types once the assemblies have been loaded.

• How to create instances of types, including creating generic collections.

• Some of the problems programmers (particularly C# programmers) may run
into when trying to fit their experience onto PowerShell semantics.

The remainder of the chapter was taken up by a series of examples. These examples
included network programming in PowerShell. We looked at:

• Retrieving a simple web page in a script.

• Reading and processing an RSS feed.

• Writing a (toy) web server in PowerShell.

Next we looked at a series of examples showing how to do basic WinForms program-
ming in PowerShell. We implemented:

• A simple “my first form”-style example that just displayed a button.

• A slightly more complicated example for building a basic dialog.

• A significantly more complex graphical calculator example.

• An example that used data binding to display a grid of objects in a form.
SUMMARY 391

C H A P T E R 1 2

Windows objects:
COM and WMI

12.1 Working with COM in PowerShell 393
12.2 Working with WMI in PowerShell 421
12.3 So which object model should I choose? 437
12.4 Summary 437
A horse! A horse! My kingdom for a horse!

 —William Shakespeare

 The Life and Death of King Richard III

A horse is a horse of course of course
And no one can talk to a horse, of course
That is, of course, unless the horse is the famous Mister Ed!

 —The Mr. Ed TV Show

At the end of Shakespeare’s Richard III, King Richard stands upon a plain, surrounded
by foes, crying out for the one thing that he needs to continue on. Sort of like a sysad-
min. Okay, perhaps not exactly like that, but at times, we do feel set upon from all sides,
crying desperately for something to help us solve our problems. Fortunately, we in the
PowerShell world do get our horse. In fact, we get two of them—WMI and COM.
392

In earlier chapters, we devoted a lot of attention to .NET, the new object model
from Microsoft. But there are two older workhorse technologies that are still heavily
used on the Windows platform. The first of these is COM, Microsoft’s Component
Object Model. This is most commonly used as the Windows automation mechanism.

The other major object model is WMI, Windows Management Instrumentation.
This is Microsoft’s implementation of the Common Instrumentation Model or CIM.
CIM is an industry standard created by Microsoft, HP, IBM, and many other
computer companies with the intent of coming up with a common set of
management abstractions.

We care about these technologies because there are still elements of the system
that are accessible only from COM or WMI. Until there is full cmdlet or .NET cover-
age for everything we need, we’ll sometimes find ourselves turning to COM or WMI
to complete a task.

In this chapter, we’ll cover the important details for accessing these two facilities
from PowerShell. We’ll look at a number of examples that illustrate how things work
and the sorts of tasks that can be accomplished. We’ll also look at how we can mix
the traditional Windows scripting language VBScript into PowerShell scripts. We’ll
even see how we can make a horse talk (or at least a parrot).

12.1 WORKING WITH COM IN POWERSHELL

Working with COM requires creating instances of COM objects. As with .NET
objects, this is done with the New-Object cmdlet, but this time you have to specify
the -ComObject parameter.

The signature of New-Object is different when creating COM objects. See
figure 12.1. We can’t specify any arguments when constructing the object, and then
there’s the -strict switch. This switch tells the cmdlet to generate an error if a .NET/
COM Interop library is loaded. This is an important feature because of the way object
adaptation works in PowerShell. This is complicated, so let’s go through it in pieces.

In chapter 3, we talked about how PowerShell adapts different types of objects.
COM objects are one of types that are adapted. The form that this adaptation takes,
however, is affected by the presence or absence of a COM Interop library. In effect,

New-Object [-ComObject] <String > -strict

The cmdlet name The ProgID of the object to
create

Require that the
COM object be

returned instead of
the interop assembly

Figure 12.1 New-Object usage for creating COM objects
WORKING WITH COM IN POWERSHELL 393

the Interop library is .NET’s “adaptation layer” for COM. The PowerShell adapter
will project a different view of the COM object depending upon whether there is an
Interop library available. For a specific COM object on a specific machine, there may
or may not be an Interop library. Consequently, if we write scripts assuming that
there is no Interop library and it turns out that there is one, our script may break
because the data model is different. By specifying the -strict parameter, we can
detect this condition. Once we know what is happening, we can decide whether we
want to fail or whether we want to continue, but along a different code path. This is
something to keep in mind when writing a script that uses COM that you plan to
deploy on other machines. We’ll discuss this more later in the chapter.

As far as PowerShell is concerned, COM objects are identified by something called
the ProgID. This is a string alias that is provided when the class is registered on the
system. This is the most human-friendly way of identifying the object. By conven-
tion, the ProgID has the form:

<Program>.<Component>.<Version>

and, per the MSDN documentation, should be less than 39 characters in length.

While this format is the recommended presentation, there is no real way to
enforce it, resulting in some “interesting” interpretations for what each of
the elements actually means. Generally, it seems in practice that <Pro-
gram> is the application suite, toolset, or vendor which installs it; <com-
ponent> is actually the COM class name; and the version number is
normally not used in calls, although it may exist in even a multipart form.
Thus, even as wshom.ocx has been extended, it has retained the versioned
form WScript.Shell.1, but is almost always used in script as just
WScript.Shell; and the XML DOM is exposed as Msxml2.DOMDoc-
ument with a .2.6, .4.0, .6.0 suffix and so on, but is always instantiated as
Msxml2.DOMDocument.

COM objects are registered in (where else?) the registry. This means that we can use
the registry provider to search for ProgIDs from PowerShell. Here’s a function we’ll
call Get-ProgID that will do it:

function Get-ProgID
{
 param ($filter = '.')

 $ClsIdPath = "REGISTRY::HKey_Classes_Root\clsid*\progid"
 dir $ClsIdPath |
 % {if ($_.name -match '\\ProgID$') { $_.GetValue("") }} |
 ? {$_ -match $filter}
}

This searches through the registry starting at the classes root, where COM objects
are registered for keys whose paths end in “ProgID”. From the keys, we retrieve the

AUTHOR’S
NOTE
394 CHAPTER 12 WINDOWS OBJECTS: COM AND WMI

default property, which contains the name string of the ProgID. We check this string
against the filter and, it if matches, write it to the output stream. Let’s try it out. We
want to find the ProgID for Internet Explorer.

PS (1) > Get-ProgID internetexplorer
InternetExplorer.Application.1

And there it is: InternetExplorer.Application.1. As described previously,
the program is InternetExplorer and the component in this case is the actual
Internet Explorer application. We can use this same pattern to find the automation
interfaces for other applications. Let’s look for Microsoft Word.

PS (2) > Get-ProgID word.*applica
Word.Application.11

We find the ProgID for Word 11, which is part of Office 2003. What about non-
Microsoft applications? Let’s pick an application that we may have installed on our
computer. We’ll look for the Apple Computer iTunes media player.

PS (3) > Get-ProgID itunes.*application
iTunes.Application.1

Again, it follows the naming convention.
Now let’s look at another way to find ProgIDs. This can be done through

WMI—the subject of the second half of this chapter. Here’s the alternative script.

function Get-ProgID
{
 param ($filter = '.')

 Get-WMIObject Win32_ProgIDSpecification |
 ? {$_.ProgId -match $filter} |
 select-object ProgID,Description
}

Not only is this script simpler, it provides additional information: a description of the
ProgID. Let’s look up Microsoft Word again:

PS (6) > (get-progids word.application) | select-object –First 1

ProgID Description
------ -----------
Word.Application.11 Microsoft Word Application

This time we get the ProgID and its description. The downside to this mechanism is
that it only locates a subset of the registered ProgIDs, so the registry-based script is
usually the best approach.

Once you have the ProdID, you can use it with New-Object to create instances
of these objects. In the next few sections, we’ll go over examples of the broad range of
things you can do with COM objects.
WORKING WITH COM IN POWERSHELL 395

12.1.1 Automating Windows with COM

The first group of examples will be to work with and automate the basic elements of
Windows itself. We’ll start with automating Windows Explorer, then look at activat-
ing a control panel applet, and finally look at automating an application by sending
keystrokes to it.

Example: "Exploring" with the Shell.Application class

First we’ll work with Windows Explorer (you know—that other Windows shell—the
GUI one). The Explorer application exports an automation model that lets you auto-
mate some tasks from a script. Automation model means that there is a COM object
interface that lets an external program manipulate some aspects of an application. For
the GUI Shell, this is done through the Shell.Application object. Let’s explore
what this can do. First we create an instance of the object:

PS (3) > $shell = new-object -com Shell.Application

COM objects, like all other object types in the system, can be examined through
Get-Member. Let’s look at the members on the object we’ve instantiated:

PS (4) > $shell | gm

 TypeName: System.__ComObject#{efd84b2d-4bcf-4298-be25-eb542a5
9fbda}

Name MemberType Definition
---- ---------- ----------
AddToRecent Method void AddToRecent (Variant, st...
BrowseForFolder Method Folder BrowseForFolder (int, ...
CanStartStopService Method Variant CanStartStopService (...
CascadeWindows Method void CascadeWindows ()
ControlPanelItem Method void ControlPanelItem (string)
EjectPC Method void EjectPC ()
Explore Method void Explore (Variant)
ExplorerPolicy Method Variant ExplorerPolicy (string)
FileRun Method void FileRun ()
FindComputer Method void FindComputer ()
FindFiles Method void FindFiles ()
FindPrinter Method void FindPrinter (string, str...
GetSetting Method bool GetSetting (int)
GetSystemInformation Method Variant GetSystemInformation ...
Help Method void Help ()
IsRestricted Method int IsRestricted (string, str...
IsServiceRunning Method Variant IsServiceRunning (str...
MinimizeAll Method void MinimizeAll ()
NameSpace Method Folder NameSpace (Variant)
Open Method void Open (Variant)
RefreshMenu Method void RefreshMenu ()
ServiceStart Method Variant ServiceStart (string,...
396 CHAPTER 12 WINDOWS OBJECTS: COM AND WMI

ServiceStop Method Variant ServiceStop (string, ...
SetTime Method void SetTime ()
ShellExecute Method void ShellExecute (string, Va...
ShowBrowserBar Method Variant ShowBrowserBar (strin...
ShutdownWindows Method void ShutdownWindows ()
Suspend Method void Suspend ()
TileHorizontally Method void TileHorizontally ()
TileVertically Method void TileVertically ()

ToggleDesktop Method void ToggleDesktop ()
TrayProperties Method void TrayProperties ()
UndoMinimizeALL Method void UndoMinimizeALL ()
Windows Method IDispatch Windows ()
WindowsSecurity Method void WindowsSecurity ()
Application Property IDispatch Application () {get}
Parent Property IDispatch Parent () {get}

Woohoo! Jackpot! (At least that’s how I felt when I first saw this.) Look at all that
stuff! Let’s try it out. We’ll start with the Explore() method, which will launch an
Explorer window on the path specified.

PS (10) > $shell.Explore("c:\")
PS (11) >

At which point you should see something that looks like what’s shown in figure 12.2.
The method call started an Explorer window at the root of the C: drive. Now let’s

look at another example. We’ll use the Windows() method to get a list of the
Explorer windows that are open.

PS (16) > ($shell.Windows()).count
13

Figure 12.2 Launching the Windows Explorer on C:\
WORKING WITH COM IN POWERSHELL 397

Thirteen are open; let’s look at the first one. We’ll look at the members on this object:

PS (17) > $shell.Windows() | gm

 TypeName: System.__ComObject#{d30c1661-cdaf-11d0-8a3e-00
c04fc9e26e}

Name MemberType Definition
---- ---------- ----------
ClientToWindow Method void ClientToWindow (int...
ExecWB Method void ExecWB (OLECMDID, O...
GetProperty Method Variant GetProperty (str...
GoBack Method void GoBack ()
GoForward Method void GoForward ()
GoHome Method void GoHome ()
GoSearch Method void GoSearch ()
Navigate Method void Navigate (string, V...
Navigate2 Method void Navigate2 (Variant,...
PutProperty Method void PutProperty (string...
QueryStatusWB Method OLECMDF QueryStatusWB (O...
Quit Method void Quit ()
Refresh Method void Refresh ()
Refresh2 Method void Refresh2 (Variant)
ShowBrowserBar Method void ShowBrowserBar (Var...
Stop Method void Stop ()
AddressBar Property bool AddressBar () {get}...
Application Property IDispatch Application ()...
Busy Property bool Busy () {get}
Container Property IDispatch Container () {...
Document Property IDispatch Document () {g...
FullName Property string FullName () {get}
FullScreen Property bool FullScreen () {get}...
Height Property int Height () {get} {set}
HWND Property int HWND () {get}
Left Property int Left () {get} {set}
LocationName Property string LocationName () {...
LocationURL Property string LocationURL () {g...
MenuBar Property bool MenuBar () {get} {s...
Name Property string Name () {get}
Offline Property bool Offline () {get} {s...
Parent Property IDispatch Parent () {get}
Path Property string Path () {get}
ReadyState Property tagREADYSTATE ReadyState...
RegisterAsBrowser Property bool RegisterAsBrowser (...
RegisterAsDropTarget Property bool RegisterAsDropTarge...
Resizable Property bool Resizable () {get} ...
Silent Property bool Silent () {get} {set}
StatusBar Property bool StatusBar () {get} ...
StatusText Property string StatusText () {ge...
TheaterMode Property bool TheaterMode () {get...
ToolBar Property int ToolBar () {get} {set}
Top Property int Top () {get} {set}
398 CHAPTER 12 WINDOWS OBJECTS: COM AND WMI

TopLevelContainer Property bool TopLevelContainer (...
Type Property string Type () {get}
Visible Property bool Visible () {get} {s...
Width Property int Width () {get} {set}

And again we see lots of tantalizing things to play with. Let’s look at the first item:

PS (21) > $shell.Windows()[0]
Unable to index into an object of type System.__ComObject.
At line:1 char:18
+ $shell.Windows()[0 <<<<]

We got an error. So what happened here? If you look at the type of the object; you’ll
see that it’s a System.__ComObject, which is the .NET mechanism for accessing
COM objects. PowerShell wraps and adapts these objects, but the adaptation is not
perfect, and this is one of the places it shows through.

These problems are not strictly PowerShell’s fault. There are general in-
terop problems between COM and .NET, and PowerShell inherits these
problems since PowerShell uses the .NET mechanism to interoperate with
COM. It can also, however, benefit from the solutions. If there is a
workaround to an interop problem in .NET, that solution can generally be
applied in the PowerShell world as well. And as bugs are fixed in the .NET/
COM interop code, they are also automatically fixed in PowerShell.

The PowerShell interpreter doesn’t know how to index on these objects. This doesn’t
mean that you can’t do it, however. Instead of simple indexing, you have to use the
Item() parameterized property.

A parameterized property is like a method—it takes arguments in paren-
theses just like a method, but it can also be assigned to like a property. In-
dexing on a COM collection in PowerShell is done using the Item()
parameterized property.

Let’s try it again:

PS (18) > $shell.Windows().Item(0)

Application : System.__ComObject
Parent : System.__ComObject
Container :
Document : mshtml.HTMLDocumentClass
TopLevelContainer : True
Type : HTML Document
Left : 354
Top : 80
Width : 838
Height : 489
LocationName : Windows PowerShell : Casting a scrip
 tblock to an arbitrary delegate sign
 ature

AUTHOR’S
NOTE

AUTHOR’S
NOTE
WORKING WITH COM IN POWERSHELL 399

LocationURL : http://blogs.msdn.com/powershell/arc
 hive/2006/07/24/Casting_a_scriptbloc
 k_to_an_arbitrary_delegate_signature
 .aspx
Busy : False
Name : Windows Internet Explorer
HWND : 591430
FullName : C:\Program Files\Internet Explorer\i

 explore.exe
Path : C:\Program Files\Internet Explorer\
Visible : True
StatusBar : True
StatusText :
ToolBar : 1
MenuBar : True
FullScreen : False
ReadyState : 4
Offline : False
Silent : False
RegisterAsBrowser : False
RegisterAsDropTarget : True
TheaterMode : False
AddressBar : True
Resizable : True

Once again, there are many tantalizing things to play with. For example, there are a
couple properties that tell you the title of a window as well as the URL that is being
viewed in it. Let’s select just those properties.

PS (15) > $shell.Windows() |
>> select-object -first 1 locationname,locationurl |
>> fl
>>

LocationName : Windows PowerShell : Casting a scriptblock t
 o an arbitrary delegate signature
LocationURL : http://blogs.msdn.com/powershell/archive/200
 6/07/24/Casting_a_scriptblock_to_an_arbitrar
 y_delegate_signature.aspx

We can see that it’s pointing at the PowerShell team blog (purely by accident of
course). Now let’s do something about all those extras that clutter up our browser
windows. Let’s get rid of the menu bar. First we’ll examine its current state:

PS (10) > $shell.Windows().Item(0).MenuBar
True

The browser window with the menu bar turned on is shown in figure 12.3.
Let’s turn it off by setting the MenuBar property to $false.

PS (19) > $shell.Windows().Item(0).MenuBar = $false
400 CHAPTER 12 WINDOWS OBJECTS: COM AND WMI

Figure 12.4 shows what the window looks like now. The menu bar is gone and we’ve
reclaimed that space to view our web pages.

Here’s another useful set of functions. There are three functions is this set. The
first is Export-Window, which will grab all of the open window URLs and save then
in a script that can be used later on to reopen the windows. We’ll save them as a col-
lection of hashtables where the title member of the hashtable contains the window
title and the url member holds the URL for that location. The Export-Window
function is shown in listing 12.1.

function Export-Window
{
 param($file=(join-path (resolve-path ~) saved-urls.ps1))

 $shellApp = new-object -com Shell.Application
 $shellApp.Windows() | % {
 @"
@{
 title='$($_.LocationName -replace "'","''")'
 url='$($_.LocationUrl -replace "'","''")'
}
"@

 } | out-file -width 10kb -filepath $file `
 -encoding Unicode
}

Figure 12.3

A browser window with the

menu bar showing. Notice

where the menu bar shows

up, as we will hide it later on.

Figure 12.4

A browser window after run-

ning a PowerShell command

to hide the menu bar. Compare

this to the previous figure to

verify that the menu bar is in-

deed gone.

Listing 12.1 The Export-Window function

Default
path

B

Get the
windows

C

Format
hashtableD

Write
file

E

WORKING WITH COM IN POWERSHELL 401

The default place where the data is saved is a file called “saved-urls.ps1” in our
home directory. We’ll use the Shell.Application object to obtain a list of the
windows to save . A here-string is used to format the information in PowerShell
hash literal syntax . Note that the -replace operator is used to handle embedded
single quotes in the either the title or the URL. Finally the text is written out to the
file in large blocks encoded as Unicode data .

The next function (see listing 12.2) will reload the saved window descriptions.
There is almost nothing to this function—it takes the path to the script created by
Export-Window and simply executes it.

function Import-Window
{
 param(
 $File=(join-path (resolve-path ~) saved-urls.ps1),
 [switch] $show
)

 & $file | foreach {
 if ($Show)
 {
 explorer $_.url
 }
 else
 {
 $_
 }
 }
}

The script uses the $show parameter to decide whether it should reopen the windows
or simply emit the data.

Opening and closing windows is all very nice, but what else can we open? We’ll
look at that next.

Example: Opening control panel items

Here’s one more example using the Shell.Application class: opening a control
panel item. This saves us from having to navigate through all those tedious menus. As
before, we need an instance of the Shell.Application object.

$shell = new-object -com Shell.Application

Now let’s open the control panel applet that controls the desktop settings. Run the
following command

$shell.ControlPanelItem("desk.cpl")

B

C
D

E

Listing 12.2 The Import-Window function
402 CHAPTER 12 WINDOWS OBJECTS: COM AND WMI

The “Display Properties” control panel applet will appear on the desktop. Likewise, if
we want to run the Add/Remove Programs wizard, we can use the following command

$shell.ControlPanelItem("appwiz.cpl")

In fact, you can open any of the control panel applets found using

dir $env:windir\system32 –recurse –include *.cpl

Now let’s move on to another COM class used for scripting Windows.

Example: Working with the WScript.Shell class

The WScript.Shell class should be familiar to most VBScript users. It contains a
collection of common services useful for writing scripts on Windows. Let’s explore
this control. First we create an instance to work with:

PS (1) > $wshell = new-object -com WScript.Shell

Now let’s see what it can do using Get-Member:

PS (2) > $wshell | Get-Member

 TypeName: System.__ComObject#{41904400-be18-11d3-a28b-00104bd
35090}

Name MemberType Definition
---- ---------- ----------
AppActivate Method bool AppActiva...
CreateShortcut Method IDispatch Crea...
Exec Method IWshExec Exec ...
ExpandEnvironmentStrings Method string ExpandE...
LogEvent Method bool LogEvent ...
Popup Method int Popup (str...
RegDelete Method void RegDelete...
RegRead Method Variant RegRea...
RegWrite Method void RegWrite ...
Run Method int Run (strin...
SendKeys Method void SendKeys ...
Environment ParameterizedProperty IWshEnvironmen...
CurrentDirectory Property string Current...
SpecialFolders Property IWshCollection...

The purpose of many of these methods is fairly obvious. For example, to pop up a
message box, we can use the Popup method. We enter the following command:

PS (24) > $wshell.Popup("Hi there")
1

And up pops a message box that looks like what’s in figure 12.5.
One nice thing about calling this method: This message box doesn’t get lost on

your desktop. You’ll remember we had that problem with the WinForms message
box. Now let’s look at something a bit more sophisticated.
WORKING WITH COM IN POWERSHELL 403

Example: Sending keystrokes to a Windows application

One of the methods on the WScript.Shell class is SendKeys(). This lets you
send keys to an application as if you were typing them yourself. Let’s look at how we
can use this to automate a Windows GUI application. We’ll work with the Windows
calculator in this example. First we need an instance of the object. (If you’re following
along with these examples, you can reuse the same instances. There’s no need to keep
creating new ones.)

$shell = new-object -com WScript.Shell

Next we start the calculator. Since PowerShell is a shell, we could enter calc on the
command line and be done with it. Instead, since we’re working with this object,
we’ll use its Run() method to start the application.

[void] $shell.Run("calc")

Now give the application a second to start, then use the AppActivate() method to
set the focus on the calculator. Once we’re sure it’s active, we’ll send a sequence of
keys to the application, waiting for a second between each operation.

start-sleep 1
if ($shell.AppActivate("Calculator"))
{
 "Calculator activated..."
 start-sleep 1
 $shell.SendKeys("10{+}")
 start-sleep 1
 $shell.SendKeys("22")
 start-sleep 1
 $shell.SendKeys("~")
 start-sleep 1
 $shell.SendKeys("*3")
 start-sleep 1
 $shell.SendKeys("~")
 start-sleep 1
 $shell.SendKeys("%{F4}")
}

If you run this script, you’ll see “10” appear in the result window, followed by 22,
then the two are added to give 32, and so on. Finally we send the sequence <alt><f4>

Figure 12.5

When you use the WScript.Shell

object to pop up a message box, it will

look like this.
404 CHAPTER 12 WINDOWS OBJECTS: COM AND WMI

to tell the application to close. (This is why we make sure that the calculator is active.
Closing the wrong window could be bad.)

If you’re interested in this kind of thing, there is a freely available tool called
AutoIT that many people recommend as being a better approach to this
type of activity.

So far, we’re still just opening and manipulating windows, so let’s move on to some
non-shell-related classes.

12.1.2 Networking, applications, and toys

In this section, we’ll look at some of the networking classes, some examples of work-
ing with Microsoft Office applications, and, finally, an entertaining application that
uses the MSAgent class to do some animations. We’ll start with the networking class.

Example: Looking up a word using Internet Explorer

In this example, we’re going to use Internet Explorer to access a web page through its
COM automation object. The goal is to use the Wiktionary website to look up the
definition of a word. The script takes two parameters—the word to look up and an
optional switch to tell the script that we want to make the browser window visible
and leave it open during the search. This script is shown in listing 12.3.

param(
 $word = $(throw "You must specify a word to look up."),
 [switch] $visible
)

[void] [Reflection.Assembly]::LoadWithPartialName("System.Web")

$ie = new-object -com "InternetExplorer.Application"
$ie.Visible = $visible
$ie.Navigate2("http://en.wiktionary.org/wiki/" +
 [Web.HttpUtility]::UrlEncode($word))

while($ie.ReadyState -ne 4)
{
 start-sleep 1
}

$bodyContent = $ie.Document.getElementById("bodyContent").innerHtml

$showText=$false
$lastWasBlank = $true
$gotResult = $false

switch -regex ($bodyContent.Split("`n"))

AUTHOR’S
NOTE

Listing 12.3 Get-WordDefinition script

Load
System.Web

B

Navigate to
Wiktionary

C

Wait until
readyD

Extract
data
E

Process
data

F

WORKING WITH COM IN POWERSHELL 405

{
'^\<DIV class=infl-table' {
 $showText = $true
 continue
 }
'^\<DIV|\<hr' {
 $showText = $false
 }

'\[.*edit.*\].*Translations' {
 $showText = $false
 }
{$showText} {
 $line = $_ -replace '\<[^>]+\>', ' '
 $line = ($line -replace '[\t]{2,}', ' ').Trim()

 if ($line.Length)
 {
 $line
 $gotResult = $true
 $lineWasBlank = $false
 }
 else
 {
 if (! $lineWasBlank)
 {
 $line
 $lineWasBlank = $true
 }
 }
 }
}

if (! $gotResult)
{
 "No Answer Found for: $word"
}

if (! $visible)
{
 $ie.Quit()
}

We’re going to load an additional .NET assembly because we need to encode our
word into a URL to send to the Wiktionary site. Next we get an instance of the Internet
Explorer object. Tell IE to navigate to the Wiktionary website and look up the word .
This may take a while, so we loop, waiting for the document to be loaded . When
the document is ready, we use the Internet Explorer Document object model to extract
the information we want out of the document . Even after we’ve extracted the doc-
ument, the information we’re after still requires a significant amount of work to locate

Close IEG

B

C
D

E

406 CHAPTER 12 WINDOWS OBJECTS: COM AND WMI

and extract. We do this using the switch statement . If there was an answer then we’ll
display it; if not, we’ll give the user an error message.

And finally, if the visible flag hasn’t been specified, close the browser window .
Let’s try looking something up:

PS (1) > ./Get-WordDefinition.ps1 factorial

Singular factorial

Plural factorials
factorial (plural factorials)

(mathematics) The result of multiplying a given number of
 consecutive integers from 1 to the given number. In equati
ons, it is symbolized by an exclamation mark (!). For examp
le, 5! = 1 * 2 * 3 * 4 * 5 = 120.

[edit] Usage notes
" n !" is read as "factorial of n ."

PS (2) >

And there we go—the world of critical knowledge at our fingertips!

In practice, this type of script, which is dependent on a website that we
don’t control, is very fragile. It is extremely dependent on the structure of
pages generated by the target website, and these are subject to change at any
time. (In fact, this example had to be revised during the production of the
book because Encarta, the original target website, did change its format.) If
the page structure changes our script will be broken. (A well-structured data
source such as the RSS feed, as we’ll see in the next example, allows for
much more reliable scripts.) This is also not the most efficient way to do
this. We could have just used the .NET WebClient object instead of firing
up the browser. On the other hand, this example does illustrate how you
can use a script to automate the browser.

Example: Using the WinHTTP class

to retrieve an RSS feed

Now we’ll look at using the WinHTTP COM object to write a script that accesses an
RSS feed. This is similar to what we did with .NET, but illustrates how to use COM to
do the same thing. This script will grab the most recent headlines from the popular
Digg.com RSS feed, format them as a page of links in HTML, then display this page
using the default browser.

First we define a function Get-ComRSS that will do the actual network access.
This is shown in listing 12.4.

F

G

AUTHOR’S
NOTE
WORKING WITH COM IN POWERSHELL 407

function Get-ComRSS
{
 param($url = $(throw "You must specify a feed URL to read"))

 $objHTTP = new-object -com winhttp.winhttprequest.5.1
 $objHTTP.Open("GET",$url,$false)
 $objHTTP.SetRequestHeader("Cache-Control",
 "no-store, no-cache, must-revalidate")
 $objHTTP.SetRequestHeader("Expires",
 "Mon, 26 Jul 1997 05:00:00 GMT")

 $objHTTP.Send()
 $xmlResult = [xml]$objHTTP.ResponseText
 $xmlResult.rss.channel.item | select-object title,link
}

We create the WinHTTP request object, specify that we’re doing a page GET, then set
some headers . These headers tell the channel not to do any caching. Since we want
to get the latest and greatest headlines, getting stale cached data would be bad.

Send the request then get the response text (note we’re not checking the result
code from the request, which we probably should do). We take the response text,
convert it into XML, then extract and return the title and link fields .

Now let’s use this function. We’ll write a script called Get-Digg.ps1 that will
download the RSS feed from the popular news aggregation site Digg.com, format it
as a web page with links to the articles, and then display this page in the browser. We
can run this script by typing:

PS (1) > ./get-digg

After the script runs, the web browser should open up, displaying a page that will
look like that shown in figure 12.6.

Not the most exciting document in terms of appearance, but it gets the job done.
The script to do this is shown in listing 12.5.

Listing 12.4 Get-ComRSS function

B Create
request object

Send
request

C

Process
response

D

B

C

D

Figure 12.6

Web browser showing the re-

sult of running the Get-Digg

script. This script creates an

HTML page with links to the

current top stories on

Digg.com and then displays

this page in the browser.
408 CHAPTER 12 WINDOWS OBJECTS: COM AND WMI

$url = "http://digg.com/rss/containertechnology.xml"
filter fmtData {
 "<p>{1}</p>" -f $_.link,$_.title
}

@"
 <html>
 <head>
 <title>Digg RSS Feed</title>
 </head>
 <body>
 <p>Digg RSS Feeds on $(get-date)</p>

 $(comrss $url | fmtData)
 </body>
 </html>
"@ > $env:temp\digg_rss.htm

& $env:temp\digg_rss.htm

First we’ll put the URL we’re going to fetch into a variable to use later. We’ll also cre-
ate a function that will format our data with appropriate HTML tags. Each data
row will be formatted as an anchor element with the body text as the element title
and the HREF as the link. Next we’ll build our document. We’ll use a single here-
string , directed into a temporary file. In the here-string, we’ll use string expansion
to insert the headline data using the fmtData function. The final step is to invoke
this file using the default browser.

Obviously, a little work with table tags could make it much more attractive. Also,
since the main article content was also down-loaded in the HTTP request, it should
be possible to embed the content (or at least a synopsis) of the article in the page.
This is left as an exercise for the reader.

That’s enough networking and web-related stuff for now. In the next example,
we’ll look at using COM to manipulate Microsoft Office applications.

Example: Using Microsoft Word to do spell-checking

Wouldn’t it be great if every environment we worked in had spell-checking like word
processors do? With PowerShell and COM, we can get ourselves at least part of the
way there. We’re going to write a script that will use Microsoft Word to spell-check
the contents of the clipboard and then paste them back. We’ll call this script Get-
Spelling.ps1.

Let’s see how it’s used. First we start notepad and type some text with errors into it.

PS (1) > notepad

Listing 12.5 Get-Digg script

B Format
function

Here-string
for page

C

Invoke
browser

D

B

C

D

WORKING WITH COM IN POWERSHELL 409

Next select the text and copy it to the
clipboard. This is shown in figure 12.7.

Now we’ll run our script

PS (2) > Get-Spelling

We’ll see the Word spell-check dialog pop
up, as shown in figure 12.8.

We go through all of the spelling errors and fix them as appropriate. Once all of
the errors are fixed, the dialog will disappear and the pop-up box will be displayed,
indicating that the revised text is available in the clipboard. Switch back to the Note-
pad window and paste the revised text into the window as shown in figure 12.9.

And we’re done. The file in the Notepad window is now correctly spelled. Now that
we know how to use this script, let’s take a look at the actual code, which is shown in
listing 12.6.

if ($args.count -gt 0)
{
@"

Usage for Get-Spelling:

Copy some text into the clipboard, then run this script. It
will display the Word spellcheck tool that will let you
correct the spelling on the text you've selected. When you are
done it will put the text back into the clipboard so you can
paste it back into the original document.

"@
 exit 0
}

Listing 12.6 Get-Spelling script

B Print
usage

Figure 12.7 Notepad window show-

ing the misspelled text that we will fix

using the Get-Spelling script.

Figures 12.8 and 12.9 On the left is the The Microsoft Word spell checker launched by the Get-

Spelling script, showing the misspelled text that was copied from the clipboard. On the right is

the Notepad window showing the corrected text.
410 CHAPTER 12 WINDOWS OBJECTS: COM AND WMI

$shell = new-object -com wscript.shell
$word = new-object -com word.application
$word.Visible = $false

$doc = $word.Documents.Add()
$word.Selection.Paste()

if ($word.ActiveDocument.SpellingErrors.Count -gt 0)
{
 $word.ActiveDocument.CheckSpelling()
 $word.Visible = $false
 $word.Selection.WholeStory()
 $word.Selection.Copy()
 $shell.PopUp("The spell check is complete, " +
 "the clipboard holds the corrected text.")
}
else
{
 [void] $shell.Popup("No Spelling Errors were detected.")
}

$x = [ref] 0
$word.ActiveDocument.Close($x)
$word.Quit()

Since we’re working with only the clipboard, this script takes no arguments, but we’ll
check $args anyway and write a description of how to use the script to the output
stream .

Now we have to create the objects we’re going to use. We want to use the
WScript.Shell object from earlier in the chapter to pop up a message box, and,
rather obviously, we need to set up the Word automation object for our use. We’ll
get an instance of that object, make the Word application window itself invisible, and
then add a dummy document to hold the text we want to spell-check. Next we copy
the contents from the clipboard to the dummy Word document we created and
see whether we need to spell check the text . If we do, we’ll present the spell-check
dialog; otherwise, we don’t need to do anything.

Next, select all of the text and copy it back to clipboard so we can paste it into the
original document .

Finally, tell the user we’re done and close the application .
With this script, we can “add” spell-checking capabilities to any application that

lets us select and copy text.

Obviously, if Microsoft Word is not your word processor of choice, it
should be simple to modify the script to work with any word processor that
exports a similar automation model.

C Create
objects

D Copy
text

Display spell-
check dialog

E

F Copy text
back

Inform
user

G

B
C

D
E

F
G

AUTHOR’S
NOTE
WORKING WITH COM IN POWERSHELL 411

Example: Telling stories with Windows agents

In this example, we’re going to look at a script that Jeffrey Snover created as a prelude
to his talks on PowerShell. It uses the animated agent feature available on Microsoft
Windows. The animated agents are cartoon characters that can move and talk, like
the infamous clippie. While you may not want a cute animated paperclip calling you
a dolt for misspelling “disambiguate”, animations do have their uses. This script is an
effective tool for getting people’s attention at the beginning of a presentation. It also
shows how PowerShell can be used in application spaces that you might not expect,
such as animations and media. (And besides—it’s fun in a “yikes-this-is-a-shell-script-
you-must-be-kidding” kind of way.)

The set of characters that are available on any particular computer may
vary. Go to http://www.microsoft.com/msagent/ to find more information
about the agent feature.

Listing 12.7 shows the code for this script.

param(
 [DateTime]$StartTime = [datetime]::Now.AddMinutes(10),
 $SessionTitle="Wizzo PowerShell Session",
 $Speaker="Bob"
)

function Invoke-Display()
{
 Invoke-MSAgent $Message `
 -Character (Get-RandomElement $Characters) `
 -Size $CharacterSize `
 -MoveToX $Random.Next(500) -MoveToY $Random.Next(500) `
 -StartX $Random.Next(500) -StartY $Random.Next(500)
 Start-Sleep $SleepTime
}

function Get-RandomElement($Array)
{
 $Array[$Random.Next($Array.Count)]
}

$Sleeptime = 20
$CharacterSize = 250
$WiseCracks=(
 "PowerShell Rocks baby",
 # This is misspelled but it has to be to sound correct
 "Hay Hay, My My, the CLI will never die",
 "Powershell is wicked easy to use",
 "Scripting to Infinity and beyond!",
 "Powershell is like, ya know, wicked consistent",
 ("fish heads, fish heads, rolly polly fish heads" +

AUTHOR’S
NOTE

Listing 12.7 The Start-Agent script

Invoke-Display
function

B

Initialize
variables

C

412 CHAPTER 12 WINDOWS OBJECTS: COM AND WMI

 "fish heads, fish heads, eat them up yumm"),
 "We like questions, ask them",
 ("Powershell has direct support for " +
 "WMI, ADO, ADSI, XML, COM, and .NET"),
 "Hush up or I'll replace you with a 2 line Powershell script",
 "PowerShell goes to 11",
 "Dude! This totally rocks!",
 "Manning Books are cool!",

 "triple panic abort"
)

$Random=New-Object Random

$Path = $(Join-Path $env:windir "msagent\chars*.acs")
$Characters=@(dir $Path |
 foreach {($_.Name.Split("."))[0]})

while ($True)
{
 $till = $StartTime - [DateTime]::now
 if ($till.TotalSeconds -le 0)
 {

 $Message = "hay $Speaker, Start the session!!"
 $SleepTime = 10
 $CharacterSize = 600
 while ($true)
 {
 Invoke-Display
 }
 }

 $Message = "$SessionTitle will start in $($Till.Minutes) " +
 "minutes and $($till.Seconds) seconds"
 Invoke-Display

 $Message = Get-RandomElement $WiseCracks
 Invoke-Display
}

function Invoke-MSAgent
{
 param(
 $Messages="Hello",
 $size=250,
 $CharacterName="Merlin",
 $MoveToX=500,
 $MoveToY=500,
 $StartX=0,
 $StartY=0,
 $Async=$false
)

Random number
generator

D

Get agent
files

E

Main loopF

Show start
message

G

Show
wisecrack

H

Invoke-MSAgent
function

I

WORKING WITH COM IN POWERSHELL 413

 $Random = New-Object System.Random
 $CharacterFileName = Join-path $env:windir `
 "msagent\chars\${CharacterName}.acs"
 $AgentControl = New-Object -COMObject Agent.Control.2
 $AgentControl.Connected=$True
 [void]$AgentControl.Characters.Load(
 $CharacterName, $CharacterFileName)

 $Character = $AgentControl.Characters.Item($CharacterName)
 $AnimationNames = @($Character.AnimationNames)
 $Character.width = $Character.height=$Size
 $action = $Character.MoveTo($StartX,$StartY)
 $action = $Character.Show()
 $action = $Character.MoveTo($MoveToX,$MoveToY)

 foreach ($Message in @($Messages))
 {
 $action = $Character.Speak($Message)
 }
 $action = $Character.Hide()
 if (!$Async)
 {
 while ($Character.Visible)
 {
 Start-Sleep -MilliSeconds 250
 }
 }
 $Character = $Null
 $AgentControl.Connected=$False
 $AgentControl = $Null
}

This script takes three arguments: the time that talk starts (defaulting to 10 minutes
from now), the session title, and the presenter’s name. The Invoke-Display func-
tion is used to select which animated character to display and where that character
should appear on the screen.

Now we’ll set up some script variables that we’re going to use. The $Wise-
Cracks array holds the set of phrases that the agents will say.

You may notice that this collection of phrases is wrapped in parentheses.
This isn’t necessary, but it makes the script a little easier to maintain. The
error message you get if you forget a comma when adding a new phrase will
be cleared if the whole collection is wrapped in parentheses.

Next we’ll create an instance of the .NET random number generator . We use this
to pick the phrase to display as well as the character to show. The agent characters are
found in .ACS files located in the directory shown in the code . We search the
directory to get a list of available characters.

B

C

AUTHOR’S
NOTE

D

E

414 CHAPTER 12 WINDOWS OBJECTS: COM AND WMI

Once we have everything set up, we’ll loop forever (or at least until the user
hits Control-C), showing characters and wisecracks. Eventually it’ll be time to start
the talk, at which point we’ll show a different message .

When it’s time to show a message, we pick a character and a piece of text to say
and display them. The Invoke-MSAgent function takes care of creating the
agent control instance and then animating the character that was chosen.

The main takeaway from this script is that PowerShell is suitable in a wide variety
of application domains, including animations and speech. But enough fun. Let’s get
back to more serious matters!

12.1.3 Using the ScriptControl object

In this section, we’ll show you how to use the ScriptControl object from Power-
Shell. This may be the most important use of COM when transitioning from tradi-
tional Windows scripting (with VBScript) to PowerShell. This control will allow you
to embed fragments of VBScript (or JavaScript or any other language that has an
ActiveScript engine) into a PowerShell script. This means that you can take and reuse
existing VBScript code directly in PowerShell. There’s another reason that this is
important. Some COM objects work in COM automation languages such as VBScript,
but not in .NET environments such as PowerShell. (At least not yet. We’re working to
fix this in future releases as much as we can.)

Example: Embedding VBScript code

in a PowerShell script

We start by using the ScriptControl class to build a VBScript CodeObject. This
object makes the VBScript functions defined in the script available to the caller as
methods on this code object. The function shown in listing 12.8 returns a code
object with two of these methods on it: GetLength(), which returns the length of a
string, and Add(), which adds two objects together.

function Call-VBScript
{
 $sc = New-Object -ComObject ScriptControl
 $sc.Language = 'VBScript'
 $sc.AddCode('
 Function GetLength(ByVal s)
 GetLength = Len(s)
 End Function
 Function Add(ByVal x, ByVal y)
 Add = x + y
 End Function
 ')
 $sc.CodeObject
}

F

G
H
I

Listing 12.8 Call-VBScript function
WORKING WITH COM IN POWERSHELL 415

Now let’s use the function to mix and match some PowerShell with VBScript.

PS (1) > $vb = call-vbscript

Calling the function gives us an object with the VBScript functions available as meth-
ods. First we’ll use the GetLength() method to get the length of a string.

PS (2) > "Length of 'abcd' is " + $vb.getlength("abcd")
Length of 'abcd' is 4

Now we’ll use the Add() method, but we’ll use it inside a string expansion to illus-
trate how seamless this all is.

PS (3) > "2 + 5 is $($vb.add(2,5))"
2 + 5 is 7
PS (4) >

In the string expansion, the VBScript function is called to add the two numbers and
return the result. The result is converted to a string and included in the expanded
result string. Now let’s try the same thing with another ActiveScript language.

Example: Embedding JScript code

in a PowerShell script

The script control also supports JScript, Microsoft’s implementation of ECMAScript
(JavaScript). Listing 12.9 shows the same example, but using JScript this time.

function Call-JScript
{
 $sc = New-Object -ComObject ScriptControl
 $sc.Language = 'JScript'
 $sc.AddCode('
 function getLength(s)
 {
 return s.length
 }
 function Add(x, y)
 {
 return x + y
 }
 ')
 $sc.CodeObject
}

First we create the script control, this time specifying that the language be JScript .
Then we add the code to define our functions and finally return the object

containing our functions. We call this function to get the code object back.

PS (4) > $js = Call-JScript

Listing 12.9 Call-JScript function

Specify
JScriptBAdd

codeC

Return
CodeObject

B
C

416 CHAPTER 12 WINDOWS OBJECTS: COM AND WMI

When we run the functions on this object, we get the same results as we got from the
VBScript example.

PS (5) > "Length of 'abcd' is " + $js.getlength("abcd")
Length of 'abcd' is 4
PS (6) > "2 + 5 is $($js.add(2,5))"
2 + 5 is 7

This time, the JScript functions are called to return the results to PowerShell for display.

Example: JScript, VBScript, and

PowerShell in one script

Our last example with the ScriptControl mixes everything together. In a one-line
“script” (command line), we can mix PowerShell, VBScript, and JScript. In fact, we
can have three languages all in one expression.

PS (7) > "The answer is " +
>> $js.add($vb.getlength("hello"),2) * 6
>>
The answer is 42
PS (8) >

Using COM in PowerShell lets us do amazing things—automating applications, mix-
ing and matching languages, and so on. But there are also issues with COM support,
which we cover in the next section.

12.1.4 Issues with COM

Support for COM in the first version of PowerShell is very good but not great. In part,
this is due to the fact the .NET’s support is for COM is very good but not great either.
There are a few problems that you may run into when using COM from PowerShell.

Thread model problems

PowerShell runs in what’s called multi-threaded apartment (MTA) mode. A lot of
COM objects require the calling application to be run in single-threaded apartment
(STA) mode. The PowerShell COM adapter does a number of tricky things to work
around this, and most of the time it works fine. If you run into something that
doesn’t work, things get a bit tricky. You can work around it, but it involves writing
some code in C# or VB.Net to spin up a new STA thread that does the object access
and returns the result to the calling thread. Actually doing this is beyond the scope of
this book, but will be covered in the companion Windows PowerShell in Practice book.

Interop assemblies, wrappers, and typelibs

The other thing that can potentially cause problems has to do with the way the
COM object has been wrapped or adapted. There are three possible categories of
COM object we may encounter: a COM object that has a .NET interop library, a
WORKING WITH COM IN POWERSHELL 417

COM object that has a type library (commonly called a typelib) but no interop
assembly, and a COM object which has neither.

In the first category, we can get a COM object that has been wrapped in a .NET
interop wrapper. This wrapper may introduce changes in the object’s interface that
affect how we work with that object compared to the raw COM object. For this rea-
son, the New-Object -com parameter set has an additional parameter -strict that
causes a non-terminating error to be written if an interop assembly is loaded. Let’s
look at some examples. We’ll start with creating an instance of the Word.Applica-
tion object we used earlier.

PS (23) > $word = new-object -com word.application

Now try it again but with the -strict parameter.

PS (24) > $word = new-object -com word.application -strict
New-Object : The object written to the pipeline is an insta
nce of the type "Microsoft.Office.Interop.Word.ApplicationC
lass" from the component's primary interop assembly. If thi
s type exposes different members than the IDispatch members
, scripts written to work with this object might not work i
f the primary interop assembly is not installed.
At line:1 char:19
+ $word = new-object <<<< -com word.application –strict

We get a detailed error message explaining that the object that was loaded is a
wrapped object. Note that this is a non-terminating error message, so the object was
still returned. Here’s how to use it in a script. We don’t want the error message to
appear in the output of our script, so we’ll redirect it to $null. Even when we do
this, the $? variable, which indicates whether the last command executed was suc-
cessful, is still set to $false so we know that an error occurred.

PS (26) > $word = new-object -com word.application `
>> -strict 2> $null
>>
PS (27) > $?
False

A script should check this variable and take alternate action for the wrapped and non-
wrapped cases. Now let’s take a look at what was returned by New-Object.

PS (28) > $word.gettype().fullname
Microsoft.Office.Interop.Word.ApplicationClass

We can see that’s an instance of the interop assembly as we discussed earlier. Now let’s
take a look at an object for which there is no interop assembly.
418 CHAPTER 12 WINDOWS OBJECTS: COM AND WMI

PS (43) > $shell = new-object -com Shell.Application
PS (44) > $shell | gm

 TypeName: System.__ComObject#{efd84b2d-4bcf-4298-be25-eb
542a59fbda}

Name MemberType Definition
---- ---------- ----------

AddToRecent Method void AddToRecent (Varian...
BrowseForFolder Method Folder BrowseForFolder (...
:

In this case, we see that the type of the object is System.__ComObject followed by
the GUID of the registered type library. This type library is what allows us to see the
members on the object. What about an object where there is no type library? Let’s try
it and see. We’ll create an instance of the Windows installer.

PS (45) > $in = new-object -com WindowsInstaller.Installer
PS (46) > $in | gm

 TypeName: System.__ComObject

Name MemberType Definition
---- ---------- ----------
CreateObjRef Method System.Runtime.Remo...
Equals Method System.Boolean Equa...
GetHashCode Method System.Int32 GetHas...
GetLifetimeService Method System.Object GetLi...
GetType Method System.Type GetType()
InitializeLifetimeService Method System.Object Initi...
ToString Method System.String ToStr...

The results here are pretty disappointing. We see that the type is just plain Sys-
tem.__ComObject with little in the way of useful methods and properties on it. So
is that it? Can’t we do anything with this object? Well there are a couple things we can
do, but they’re not easy.

The first thing we can do is to use a tool such as tlbimp.exe to generate a runtime-
callable wrapper (RCW) for the COM class. With this RCW wrapper, we can use the class
like any other .NET type, but it means that we have to run the tool and then load an
assembly before we can use these objects. Let’s look at a more technical but also more
portable mechanism.
WORKING WITH COM IN POWERSHELL 419

Using the PowerShell type system

to wrap COM objects

The other solution is to use .NET reflection directly to build our own wrapper library.
This is an advanced topic and requires a pretty good understanding of Sys-
tem.Reflection to accomplish. We’ll create a types extension file called Com-
Wrappers.ps1xml. The following fragment from that file shows how the
InvokeMethod extension method is defined.

 <ScriptMethod>
 <Name>InvokeMethod</Name>
 <Script>
 $name, $methodargs=$args
 [System.__ComObject].invokeMember($name,
 [System.Reflection.BindingFlags]::InvokeMethod,
 $null, $this, @($methodargs))
 </Script>
 </ScriptMethod>

This script method uses the InvokeMember method on the type object to invoke a
dynamically discovered method. There are similar implementations for getting and
setting properties as well. We’ll load ComWrappers.ps1xml and then examine the
WindowsInstaller object again.

PS (1) > Update-TypeData ./ComWrappers.ps1xml
PS (2) > $in = new-object -com WindowsInstaller.Installer
PS (3) > $in | gm

 TypeName: System.__ComObject

Name MemberType Definition
---- ---------- ----------
CreateObjRef Method System.Runtime.Re...

Equals Method System.Boolean Eq...
GetHashCode Method System.Int32 GetH...
GetLifetimeService Method System.Object Get...
GetType Method System.Type GetTy...
InitializeLifetimeService Method System.Object Ini...
ToString Method System.String ToS...
GetProperty ScriptMethod System.Object Get...
InvokeMethod ScriptMethod System.Object Inv...
InvokeParamProperty ScriptMethod System.Object Inv...
SetProperty ScriptMethod System.Object Set...

We can see the methods we added at the end of the list. Now let’s look at how we can
use these methods. We’ll use the WindowsIntaller class to look at an MSI file we’ll
call “myapplication.msi”. The code to do this is shown in listing 12.10.
420 CHAPTER 12 WINDOWS OBJECTS: COM AND WMI

$installer = new-object -com WindowsInstaller.Installer
$database = $installer.InvokeMethod("OpenDatabase",$msifile,0)

$view = $database.InvokeMethod("OpenView",
 "Select FileName FROM File")
$view.InvokeMethod("Execute");

$r = $view.InvokeMethod("Fetch");
$r.InvokeParamProperty("StringData",1);
while($r -ne $null)
{
 $r = $view.InvokeMethod("Fetch");
 if($r -ne $null)
 {
 $r.InvokeParamProperty("StringData",1);
 }
}

We create the object and use the InvokeMethod() call to invoke the OpenData-
Base() installer method , passing it the full path to the MSI file. Next we open a view
on the installer database object to get a list of the files. And finally, we’ll iterate
through the contents of the installer package.

As you can see, this is a task not for the faint of heart. If you do run across
this kind of problem and don’t feel comfortable working with reflection,
chances are good that someone in the PowerShell community has already
solved this problem, so consulting the community resources may get you
the answer you need.

At this point, we’re going to switch from COM and move on to WMI.

12.2 WORKING WITH WMI IN POWERSHELL

In this section, we’ll look at the “other” management object model—WMI. We’ll
cover what it is, where it came from, and why you should care. Then we’ll look at a
series of examples that show you how to find the information you need and then how
to access it.

12.2.1 Exploring WMI—what is it, and why do you care?

If you do Windows system administration or develop Windows server applications,
WMI should be very familiar. If you’re not a Windows administrator chances are good
you’ve never heard of it, which is too bad. WMI is the best not-so-secret management
technology that Microsoft has—at least for users. Why don’t we hear more about it?
Because it has historically suffered from the “one-telephone” syndrome. There is no
point in owning a telephone if no one is listening. Prior to PowerShell, the only way

Listing 12.10 Get-FilesInMsiPackage script

Open
databaseB

Iterate through
package

C

B
C

AUTHOR’S
NOTE
WORKING WITH WMI IN POWERSHELL 421

you could use the information that WMI made available was to write a program in
C++, write a script in VBScript, or use WMIC. All of these solutions made even the
simplest use of WMI fairly complex from a shell-user’s perspective. With PowerShell,
WMI becomes a convenient command-line tool for everyday users, as we’ll see.

In chapter 1, we mentioned that WMI stands for Windows Management Instru-
mentation. This is Microsoft’s implantation of the Distributed Management Task
Force (DMTF) Common Information Model (CIM). CIM is an industry standard for
an object model for surfacing management APIs. The DMTF website (http://
www.dmtf.org) describes CIM in the following way:

CIM provides a common definition of management information for sys-
tems, networks, applications, and services, and allows for vendor exten-
sions. CIM’s common definitions enable vendors to exchange semantically
rich management information between systems throughout the network.

That’s a spiffy if somewhat abstract definition. What it really means is that there are
ways of getting at the management data that a service or application makes available

12.2.2 The Get-WmiObject cmdlet

Let’s look at how to get at instances of WMI objects. Notice that, unlike .NET or
COM objects, we “get” these objects instead of creating them with a “new” verb. This
is because WMI is essentially a set of factories for strongly typed objects that are orga-
nized into namespaces.

These factories are called WMI providers. You may remember that Power-
Shell also has namespace providers for accessing stores such as the filesys-
tem and the registry. WMI providers and PowerShell providers are distinct
technologies, although conceptually they’re both ways of accessing objects.
In fact, there will eventually be a PowerShell provider that will let you ac-
cess WMI providers as a set of PowerShell drives.

The overall WMI architecture is also rather like a database in that you connect to the
WMI service on a particular computer, optionally specifying credentials, and retrieve
the objects using a query. Figure 12.10 shows the signature for this cmdlet.

As always, the best way to see what’s going on is to look at an example. Here is a
quick little PowerShell script that will list the software installed on a computer sys-
tem. This will return the installed program and the date that it was installed:

get-wmiobject -class "win32reg_addremoveprograms" `
 -namespace "root\cimv2" |
 select-object -property Displayname,Installdate

To run this against a remote computer, just use the -ComputerName parameter with
Get-WmiObject cmdlet (see appendix B for examples).

AUTHOR’S
NOTE

AUTHOR’S
NOTE
422 CHAPTER 12 WINDOWS OBJECTS: COM AND WMI

The most important element in this example is the class name, which, in this case, is
Win32_AddRemovePrograms. These class definitions are stored in the WMI reposi-
tory on a computer. You can get a list of the installed classes by using the -list
option to Get-WmiObject.

The standard classes that Microsoft provides are well documented. This docu-
mentation is available online at: http://msdn.microsoft.com/library/default.asp?url=/
library/en-us/wmisdk/wmi/wmi_classes.asp

If you’re reading the electronic version of this book, you can just click on
the link.

The WMI documentation includes many examples of how to use classes, which is ter-
rific. Not so terrific is that these examples are still mostly written in VBScript. The
nice thing is that it’s pretty easy to translate the important bits—the actual WMI
query—into a form that’s usable by PowerShell without a lot of work. We’ll go
through a detailed example of this later in the chapter.

12.2.3 The WMI object adapter

Let’s take a look at what an object returned from WMI looks like We’ll look at the
Win32_Process class.

Get-WmiObject
[-Namespace <String >]
[-ComputerName <String []>]
[-Credential <PSCredential >]
[-List]

Retrieve all instances
of a class from the

namespace

Select objects from a
namespace using an

SQL-like query
language

Optionally restrict the
set of properties

retrievedOptionally filter the
objects retrieved

Get-WmiObject -Query <String >

Get-WmiObject [-Class] <String >
[[-Property] <String []>]
[-Filter <String >]

The Common
Parameters.

These
parameters are
available in all

three parameter
sets

List the classes in the name
space

Specify the
namespace to

search

Specify the
computer to

search

Provide the
credentials to

use in this query

The Cmdlet
Name

Figure 12.10 The signature for the Get-WmiObject cmdlet

AUTHOR’S
NOTE
WORKING WITH WMI IN POWERSHELL 423

PS (1) > calc
PS (2) > $g=Get-WmiObject Win32_process `
>> -filter 'Name = "calc.exe"'
>>
PS (3) > $g |gm -membertype "Method,Property"

 TypeName: System.Management.ManagementObject#root\cimv2\
Win32_Process

Name MemberType Definition
---- ---------- ----------
AttachDebugger Method System.Management....
GetOwner Method System.Management....
GetOwnerSid Method System.Management....
SetPriority Method System.Management....
Terminate Method System.Management....
__CLASS Property System.String __CL...
__DERIVATION Property System.String[] __...
__DYNASTY Property System.String __DY...
__GENUS Property System.Int32 __GEN...
__NAMESPACE Property System.String __NA...
__PATH Property System.String __PA...
__PROPERTY_COUNT Property System.Int32 __PRO...
__RELPATH Property System.String __RE...
..........

Notice that the methods are the WMI methods for that particular WMI object, and
not the methods for WMI. If you want those, you can still get them using the
PSBase property. (If you remember from chapter 8, PSBase is the way to bypass the
type adapter and get at the native capabilities of an object.)

PS (7) > $g.psbase |gm -membertype Method

 TypeName: System.Management.Automation.PSMemberSet

Name MemberType Definition
---- ---------- ----------
add_Disposed Method System.Void add_Dis...
Clone Method System.Object Clone()
CompareTo Method System.Boolean Comp...
CopyTo Method System.Management.M...
CreateObjRef Method System.Runtime.Remo...
Delete Method System.Void Delete(...
Dispose Method System.Void Dispose()
Equals Method System.Boolean Equa...
Get Method System.Void Get(), ...
get_ClassPath Method System.Management.M...
..........
424 CHAPTER 12 WINDOWS OBJECTS: COM AND WMI

Now that we know a little bit about WMI objects, let’s do something with them. We’ll
start with a different approach this time. We’ll look at converting an existing VBScript
example that uses WMI into the equivalent PowerShell script.

12.2.4 WMI shootout—VBScript versus PowerShell

We said earlier that the traditional scripting tool for WMI is VBScript. PowerShell is
the new kid on the block. Let’s show why PowerShell is “better” than VBScript.

Disclaimer: the example we’re going to look at is a bit of a straw man. The
deficiencies we’re going to address haven’t really got much to do with VB-
Script. The central issue is to highlight a key difference between a program-
ming language and a shell environment. Shell environments provide
automatic facilities for things such as default presentations of data so you
don’t have to write the same tedious formatting code over and over. (In
fact, this kind of thing is so tedious that the Scriptomatic tool was cre-
ated to automatically generate formatting code for ActiveScript languages
such as VBScript and JScript.)

Wait a minute. Didn’t we just talk about hosting VBScript in PowerShell because
PowerShell can’t do everything? Correct. When working with COM, there are some
things that VBScript can do that PowerShell can’t (yet). PowerShell has an edge in
that it has simpler access to system resources than VBScript, but where it really wins is
in presenting the output of an object. Remember, separating presentation from logic
was one of the driving forces that led to PowerShell’s creation. A significant amount
of code in many VBScripts exists simply to format output. In PowerShell, most of the
time this is free—the default output rendering mechanism just works.

A VBScript example

Let’s start with a simple VBScript that uses WMI—the kind of thing that the Scrip-
tomatic tool generates. We’ll get this from Microsoft’s ScriptCenter, a repository for
all things scripting. ScriptCenter is available at http://www.microsoft.com/technet/
scriptcenter/default.mspx and the repository of scripts is available at http://
www.microsoft.com/technet/scriptcenter/scripts/default.mspx?mfr=true The script
we’re going to look at uses WMI to get a list of the codecs installed on your system.

The term codec stands for, variously, coder-decoder, compressor/decom-
pressor, or compression/decompression algorithm. A codec is a piece of
software that allows you to encode or decode a data stream. The most com-
mon use these days is for media formats such as WMA, MP3, and so on. By
checking the list of codecs, you can tell whether the system will be able to
decode and play a particular file.

The VBScript code to do this is shown in listing 12.11. (This has been simplified
somewhat from the original example.)

AUTHOR’S
NOTE

AUTHOR’S
NOTE
WORKING WITH WMI IN POWERSHELL 425

strComputer = "."
Set objWMIService = GetObject("winmgmts:" _
 & "{impersonationLevel=impersonate}!\\" & strComputer _
 & "\root\cimv2")
Set colItems = objWMIService.ExecQuery(
 "Select * from Win32_CodecFile") #1

For Each objItem in colItems
 Wscript.Echo "Manufacturer: " & objItem.Manufacturer
 Wscript.Echo "Name: " & objItem.Name
 Wscript.Echo "Path: " & objItem.Path
 Wscript.Echo "Version: " & objItem.Version
 Wscript.Echo "Caption: " & objItem.Caption
 Wscript.Echo "Drive: " & objItem.Drive
 Wscript.Echo "Extension: " & objItem.Extension
 Wscript.Echo "File Type: " & objItem.FileType
 Wscript.Echo "Group: " & objItem.Group
 strCreationDate = WMIDateStringToDate(objItem.CreationDate)
 Wscript.Echo "Creation Date: " & strCreationdate
 strInstallDate = WMIDateStringToDate(objItem.InstallDate)
 Wscript.Echo "Install Accessed: " & strInstallDate
 strLastModified = WMIDateStringToDate(objItem.LastModified)
 Wscript.Echo "Last Modified: " & strLastModified
 Wscript.Echo ""
Next

Function WMIDateStringToDate(dtmDate)
 WMIDateStringToDate = CDate(Mid(dtmDate, 5, 2) & "/" & _
 Mid(dtmDate, 7, 2) & "/" & Left(dtmDate, 4) _
 & " " & Mid (dtmDate, 9, 2) & ":" & _

 Mid(dtmDate, 11, 2) & ":" & Mid(dtmDate, _
 13, 2))
End Function

This script begins with the standard preamble that you see in most VBScripts that
use WMI. It sets up a query against the local WMI provider for this machine.

Next we display the set of fields we’re interested in. This is straightforward but
tedious. The code formats and prints each field. One thing to note is how the date
fields are handled. WMI uses a string encoding of a date object. To convert this into a
date object, we need to use a function. This function takes the string apart and
puts it into a format that the system can convert into a date object.

Now let’s look at the PowerShell version.

Listing 12.11 VBScript to list codecs

B WMI
preamble

Format
data

C

Date helper
function

D

B

C

D

426 CHAPTER 12 WINDOWS OBJECTS: COM AND WMI

The PowerShell version

We’ll do this in two steps. You may have noticed that the VBScript function to parse
the date was a bit complex. Rather than converting it into PowerShell, we’ll just reuse
it for now through the ScriptControl object we saw earlier. The first version,
which is still using the VBScript date converter function, is shown in listing 12.12
(there are much easier ways of doing this, as we’ll see later).

$code = @'
Function WMIDateStringToDate(dtmDate)
 WMIDateStringToDate = CDate(Mid(dtmDate, 5, 2) & "/" & _
 Mid(dtmDate, 7, 2) & "/" & Left(dtmDate, 4) _
 & " " & Mid (dtmDate, 9, 2) & ":" & _
 Mid(dtmDate, 11, 2) & ":" & Mid(dtmDate, _
 13, 2))
End Function
'@

$vbs = new-object -com ScriptControl
$vbs.language = 'vbscript'
$vbs.AllowUI = $false
$vbs.addcode($code)
$vco = $vbs.CodeObject

get-wmiobject Win32_CodecFile |
 %{ $_ | format-list Manufacturer, Name, Path, Version,
 Caption, Drive, Extension, FileType, Group,
 @{l="Creation Date"
 e={$vco.WMIDateStringToDate($_.CreationDate)}},
 @{l="Install Date"
 e={$vco.WMIDateStringToDate($_.InstallDate)}},
 @{l="Last Modified Date"
 e={$vco.WMIDateStringToDate($_.LastModified)}} }

We’ll use a here-string to hold the VBScript code for the date converter function.
Now use the ScriptControl object to compile it into a CodeObject . We’ll use
$vco to hold the CodeObject just to make things a bit more convenient. This lets
us invoke the method by doing $vco.WMIDateStringToDate().

Next is the PowerShell code to retrieve and print out the data . As you might
expect, it’s rather shorter than the VBScript code. We use Get-WmiObject to directly
get the data and Format-List to format the output. We have to specify the set of
fields to display; otherwise we’ll just get everything (in fact this shows PowerShell not
at its best, since you have to work harder to do less). Also of note is how the date fields
are specified. In chapter 8, we showed an example of using this construction with
Select-Object. Its use was a bit different there—we were selecting properties so we

Listing 12.12 PowerShell script to list codecs

B VBScript
code

Compile
VBScript code

C

D Process
data

B
C

D

WORKING WITH WMI IN POWERSHELL 427

used the name (n) and expression (e) entries. Now we’re using label (l) and expression
(e). The label specifies the label to use for the field and expression is a scriptblock used
to calculate the value to display.

Of course, if we’re going to work with WMI objects a lot and expect to run into
dates on a regular basis, it behooves us to add a PowerShell native date converter to
our toolbox. The second version of the script does this. That version is shown in list-
ing 12.13.

function WMIDateStringToDate($dtmDate)
{
 [datetime] ($dtmDate -replace
 '^(....)(..)(..)(..)(..)(..)(.*)$','$1-$2-$3 $4:$5:$6')
}
get-wmiobject Win32_CodecFile |
 %{ $_ | fl Manufacturer, Name, Path, Version, Caption,
 Drive, Extension, FileType, Group,
 @{l="Creation Date"
 e={WMIDateStringToDate $_.CreationDate}},
 @{l="Install Date"
 e={WMIDateStringToDate $_.InstallDate}},
 @{l="Last Modified Date"
 e={WMIDateStringToDate $_.LastModified}} }

WMIDateStringToDate is the function that converts the WMI dates . We use
regular expressions to do it, since they are so convenient in PowerShell. This date for-
mat looks like:

20051207090550.505000-480

The first four digits are the year; the next two are the month, followed by the day,
hours, minutes, and seconds. We’ll use the submatch feature with replace to rear-
range the date into something that .NET can convert into a [datetime] object. The
rest of the script is unchanged.

Now let’s look at the progress we’ve made. The VBScript version of the function
was 29 lines long. The first PowerShell version that used the VBScript date function
was 25 lines, not much better because of the overhead of using the script control. The
final version, however, was only 14 lines—half the size.

When exploring WMI, a baseline VBScript is roughly 6 lines + 1 line per property
exposed by the object, merely to show values of all instances. And it won’t work for
individual values that are arrays (e.g., a network adapter has an array IPAddress prop-
erty, even if there is only one address in the array). For PowerShell, getting a complete,
viewable result from a WMI class collection is always one line of code.

Listing 12.13 The WMIDateStringToDate function

PowerShell
date converterB

B

428 CHAPTER 12 WINDOWS OBJECTS: COM AND WMI

If we’d just consulted our documentations, we’d see that there is a COM
class that deals with these dates, saving us a bunch of entertaining but un-
necessary hacking about.

PS (1) > $d = new-object -com WbemScripting.SWbemDateTime
PS (2) > $d.value = "20051207090550.505000-480"
PS (3) > $d.GetVarDate()

Wednesday, December 07, 2005 9:05:50 AM

And there is also a fully functional .NET class that lets us do things like:

[Management.ManagementDateTimeConverter]::ToDateTime(
 "20051207090550.505000-480")

An interesting observation to take away from this exercise is that script is as long as it
is because we didn’t want to show everything about the object. In VBScript (and most
other non-shell languages), the more you want to show, the more work you need to
do. In PowerShell, the output and formatting subsystem takes care of this for us.
When we just want to dump all of the fields, the script becomes as simple as:

get-wmiobject Win32_CodecFile

This is where PowerShell has a significant advantage in terms of “whipupitude” over a
more programmer-oriented language such as VBScript. It also means that much of
WMI can be accessed with simple interactive commands, making it an everyday tool
instead of a programmer-only thing.

12.2.5 The WMI type shortcuts

In early versions of PowerShell, the only way to get a WMI object was to use the Get-
Wmiobject command we’ve been looking at. But WMI is the life’s blood of many
Windows system administrators. This fact was pointed out politely but loudly to the
development team at a Microsoft Management conference. As a consequence, late in
the development cycle, additional support for WMI was added in the form of type
aliases and conversions. Three new aliases were added: [WMI], [WMICLASS], and
[WMISEARCHER].

The [WMISEARCHER] alias is a type accelerator for [System.Manage-
ment.ManagementObjectSearcher]. This type accelerator allows you to directly
cast a string containing a WMI Query Language (WQL) query into a searcher object.
Once we have a searcher object, we just have to call its GET() method to retrieve the
corresponding data:

PS (1) > $qs = 'Select * from Win32_Process ' +
>> 'where Handlecount > 1000'
>>
PS (2) > $s = [WmiSearcher] $qs
PS (3) > $s.Get() | sort handlecount |
>> fl handlecount,__path,name
>>

AUTHOR’S
NOTE
WORKING WITH WMI IN POWERSHELL 429

handlecount : 1124
__PATH : \\BRUCEPAY64H\root\cimv2:Win32_Process.Handle
 ="3144"
name : iexplore.exe

handlecount : 1341
__PATH : \\BRUCEPAY64H\root\cimv2:Win32_Process.Handle

 ="3380"
name : OUTLOOK.EXE

handlecount : 1487
__PATH : \\BRUCEPAY64H\root\cimv2:Win32_Process.Handle
 ="2460"
name : powershell.exe

handlecount : 1946
__PATH : \\BRUCEPAY64H\root\cimv2:Win32_Process.Handle
 ="988"
name : svchost.exe

The [WMI] alias is a type accelerator or shortcut for the type [System.Manage-
ment.ManagementObject].

The term type accelerator is one that we haven’t used so far. It’s simply a
shortcut for a commonly used type in PowerShell, but with special han-
dling when used as a cast that allows for more advanced behavior. The best
example is the [xml] type accelerator, which allows you to take a string or
array of strings and simply cast it into an XML document. Interestingly
enough, this term more or less spontaneously appeared in the PowerShell
team vocabulary because its members really “accelerated” solving certain
classes of problems.

This type accelerator will cast a string specifying a local or absolute WMI path into a
WMI instance and return an object bound to that instance. We’ll reuse our previous
[WMISEARCHER] code to get the paths for processes with more than 1,000 open
handles:

PS (1) > $qs = 'Select * from Win32_Process ' +
>> 'where Handlecount > 1000'
>>
PS (2) > $s = [WmiSearcher] $qs
PS (3) > $s.Get() | sort handlecount |
>> fl handlecount,__path,name
>>

handlecount : 1124
__PATH : \\BRUCEPAY64H\root\cimv2:Win32_Process.Handle
 ="3144"
name : iexplore.exe

AUTHOR’S
NOTE
430 CHAPTER 12 WINDOWS OBJECTS: COM AND WMI

handlecount : 1341
__PATH : \\BRUCEPAY64H\root\cimv2:Win32_Process.Handle
 ="3380"
name : OUTLOOK.EXE

handlecount : 1487
__PATH : \\BRUCEPAY64H\root\cimv2:Win32_Process.Handle
 ="2460"

name : powershell.exe

handlecount : 1946
__PATH : \\BRUCEPAY64H\root\cimv2:Win32_Process.Handle
 ="988"
name : svchost.exe

PS (4) > $wp = '\\BRUCEPAY64H\root\cimv2:' +
>> 'Win32_Process.Handle="3144"'
>>
PS (5) > $proc = [WMI] $wp
PS (6) > $proc.Name
iexplore.exe
PS (7) > $proc.OSCreationClassName
Win32_OperatingSystem
PS (8) >

Finally, the [WMICLASS] alias is a type accelerator for [System.Manage-
ment.ManagementClass]. This has a string constructor taking a local or absolute
WMI path to a WMI class and returning an object bound to that class:

PS (9) > $c = [WMICLASS]"root\cimv2:Win32_Process"
PS (10) > $c | fl *

Name : Win32_Process
__GENUS : 1
__CLASS : Win32_Process
__SUPERCLASS : CIM_Process
__DYNASTY : CIM_ManagedSystemElement
__RELPATH : Win32_Process
__PROPERTY_COUNT : 45
__DERIVATION : {CIM_Process, CIM_LogicalElement, CIM_Ma
 nagedSystemElement}
__SERVER : BRUCEPAY64H
__NAMESPACE : ROOT\cimv2
__PATH : \\BRUCEPAY64H\ROOT\cimv2:Win32_Process

These type accelerators can simplify working with WMI in PowerShell significantly.
WORKING WITH WMI IN POWERSHELL 431

12.2.6 Working with WMI methods

Another important addition to PowerShell’s WMI support was the ability to directly
invoke WMI class methods. Let’s use the [WMICLASS] type accelerator to get an
instance of the Win32_Process class definition.

PS (1) > $c = [WMICLASS]"root\cimv2:WIn32_Process"

And we’ll look at the members on this object.

PS (2) > $c | gm -type methods

 TypeName: System.Management.ManagementClass#ROOT\cimv2\W
in32_Process

Name MemberType Definition
---- ---------- ----------
Create Method System.Management.Ma...
ConvertFromDateTime ScriptMethod System.Object Conver...
ConvertToDateTime ScriptMethod System.Object Conver...
CreateInstance ScriptMethod System.Object Create...
Delete ScriptMethod System.Object Delete();
GetRelatedClasses ScriptMethod System.Object GetRel...
GetRelationshipClasses ScriptMethod System.Object GetRel...
GetType ScriptMethod System.Object GetTyp...
Put ScriptMethod System.Object Put();

We can use the Create() method to start an instance of the Windows calculator
application.

PS (3) > $proc = $c.Create("calc.exe")
PS (4) > $proc | ft -auto ProcessID, ReturnValue

ProcessID ReturnValue
--------- -----------
 6032 0

Let’s use Get-Process to verify that the process was created and that its ID matches
what was returned. (Of course, the more obvious way is to simply see whether the cal-
culator windows appeared after running the command.)

PS (5) > get-process calc | ft -auto name,id

Name Id
---- --
calc 6032

Now we’ll use a WMI query to retrieve the process object for the calculator process.
We create the query and then call the Get() method to retrieve the objects.

PS (6) > $query = [WMISEARCHER] `
>> "SELECT * FROM Win32_Process WHERE Name = 'calc.exe'"
432 CHAPTER 12 WINDOWS OBJECTS: COM AND WMI

>>
PS (7) > [object[]] $procs = $query.Get()

This method returns a collection of objects, so we check the count and get the name
property from the first object in the collection to make sure that we’ve got what we
expected.

PS (8) > $procs.count

1
PS (9) > $procs[0].name
calc.exe

And, now that we have the necessary object, we can finally call the WMI method to
shut down the calculator process.

PS (10) > $procs[0].terminate(0)

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 1
__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
ReturnValue : 0

The calculator window should have vanished from the desktop at this point. We’ll use
Get-Process one more time to verify that the process is indeed gone.

PS (12) > get-process calc
Get-Process : Cannot find a process with the name 'calc'. V
erify the process name and call the cmdlet again.
At line:1 char:12
+ get-process <<<< calc
PS (13) >

This example illustrates that methods on WMI objects work pretty much as expected.
The WMI adapter takes care of the details.

12.2.7 Working with WMI events

The last element of WMI we’re going to talk about is the WMI event. Unfortunately
this doesn’t quite work the way we would like it to. One would expect that one could
just attach a scriptblock to an event like we did with WinForms in chapter 11. This
worked for WinForms because the form does a synchronous callback on the original
thread. In WMI (and other event sources in Windows), these events are generated
asynchronously, which requires that they run on a new thread. The first release of
PowerShell doesn’t allow this. What you’d have to do is write a cmdlet that listens to
WORKING WITH WMI IN POWERSHELL 433

the events and then “forwards” them to PowerShell by writing them into the pipeline.
You can, however, handle them synchronously. Let’s look at how to do this. We’ll
look at detecting when a user plugs in a USB device. We start by creating an instance
of Management.EventQuery. This query describes the events we’re interested in
being notified about.

PS (1) > $query = new-object Management.EventQuery
PS (2) > $query.QueryString =
>> "SELECT * FROM __InstanceCreationEvent WITHIN
>> 10 WHERE Targetinstance ISA 'Win32_PNPEntity' and
>> TargetInstance.DeviceId like '%USBStor%'"
>>

Next we create a ManagementEventWatcher object from this query object.

PS (3) > $watcher = new-object Management.ManagementEventWatcher `
>>> $query

And we wait to be notified that an instance of this event has occurred. This will block
the script until the event happens.

PS (4) > $result = $watcher.WaitForNextEvent()

As soon was we plug in (or turn on) a USB device, the event occurs and unblocks the
script. The event details are placed into the $result variable. Let’s take a look and
the name and device ID for what was plugged in.

PS (5) > $result.TargetInstance | fl name, DeviceId

name : HP Photosmart 2575 USB Device
DeviceId : USBSTOR\DISK&VEN_HP&PROD_PHOTOSMART_2575&REV_1.0
 0\7&31BC8B2D&0&MY586121MF04B8&0

The object in $result tells us that the device that was plugged in was an HP Pho-
tosmart printer.

12.2.8 Putting modified WMI objects back

There’s one last, very important topic we need to cover about using WMI in Power-
Shell. So far we’ve looked at getting data and we’ve looked at calling methods. Now
we need to look at putting data back. In other words, how do we go about saving
changes we’ve made to a WMI object back to the repository?

Why is this even a topic, you ask? After all, we don’t have to do this with any of
the other object types, right? The reason is that the underlying store for a WMI object
may be on a remote computer, and incrementally flushing a set of changes over a
remote connection is simply too inefficient to use on a large scale.

It would have been great if incremental updates had worked, since it would
make the user experience much simpler. Unfortunately, when we tried it,
while it was OK for small demos, it just didn’t work in real applications. As
Einstein observed, things should be as simple as possible but no simpler.

AUTHOR’S
NOTE
434 CHAPTER 12 WINDOWS OBJECTS: COM AND WMI

As a consequence, in PowerShell, WMI objects have a Put() method that must be
called before changes made to the local copy of an object are reflected back to the
underlying store. Let’s look at an example to see how this works. In this example,
we’re going to use WMI to change the volume name of the C: drive. First we’ll get the
WMI object for the logical C drive.

PS (9) > $disks = Get-WmiObject WIN32_LogicalDisk

On this system, the C: drive is the first logical disk:

PS (10) > $disks[0]

DeviceID : C:
DriveType : 3
ProviderName :
FreeSpace : 95329701888
Size : 241447768064
VolumeName : C_Drive

It currently has the boring name of “C_Drive”. Let’s give it a rather more dramatic
name:

PS (11) > $disks[0].VolumeName = "PowerShellRocks"

Now verify that the property in the object has actually been changed:

PS (12) > $disks[0]

DeviceID : C:
DriveType : 3
ProviderName :
FreeSpace : 95329701888
Size : 241447768064
VolumeName : PowerShellRocks

and it has. But has this information actually been updated in the system yet? We can
check on this by querying the repository again:

PS (13) > (get-wmiobject win32_logicaldisk)[0]

DeviceID : C:
DriveType : 3
ProviderName :
FreeSpace : 95329603584
Size : 241447768064
VolumeName : C_Drive

Clearly, while the local object may have been changed, the system itself hasn’t been
updated. The change remains local to the object we modified. Now let’s call the
Put() method on the object to flush the changes back to the system.

PS (14) > $result = $disks[0].Put()
WORKING WITH WMI IN POWERSHELL 435

Notice we’ve save the result of the Put() call. We’ll get to that in a second. First let’s
make sure that the system was property updated.

PS (15) > (Get-WmiObject WIN32_LogicalDisk)[0]

DeviceID : C:
DriveType : 3
ProviderName :
FreeSpace : 95329579008
Size : 241447768064
VolumeName : PowerShellRocks

We see that it was. Now let’s look at what we got back from the Put() call. Let’s look
at the type first.

PS (16) > $result.GetType().FullName
System.Management.ManagementPath
PS (17) > "$result"
\\localhost\root\cimv2:Win32_LogicalDisk.DeviceID="C:"

It’s a [Management.ManagementPath] object, which we can then cast back into the
corresponding drive object, per the earlier discussion of the WMI type accelerators.

PS (18) > $d = [wmi] "$result"
PS (19) > $d

DeviceID : C:
DriveType : 3
ProviderName :
FreeSpace : 95328575488
Size : 241447768064
VolumeName : PowerShellRocks

Now we have a new instance of the logical disk object.
This example illustrates the basic approach for using PowerShell to modify system

settings through WMI. First we retrieve the object, then make the necessary updates,
and finally Put() it back. Because this is an unfortunate but necessary departure
from the behavior of the other types of objects, it is important to be aware of it.

This completes our coverage of using WMI from PowerShell. With these basics, it
should be possible to adapt existing WMI samples and resources for your work with
PowerShell.

Appendix B contains a number of examples showing how to use WMI to
perform admin tasks. These examples include a script for checking a set of
machines to see whether a particular set of hot fixes have been deployed to
those machines.

AUTHOR’S
NOTE
436 CHAPTER 12 WINDOWS OBJECTS: COM AND WMI

12.3 SO WHICH OBJECT MODEL SHOULD I CHOOSE?

So far, we’ve looked at three different technologies—.NET, COM, and WMI. We’ve
also seen that there is significant overlap in what you can do in each model. In fact,
one blogger was sufficiently inspired by the plethora of options in PowerShell that he
wrote a song called “50 Ways to Kill a Process”. While there may not be 50 ways,
between cmdlets, .NET, WMI, COM, the ScriptControl, and external commands,
there are certainly a lot of choices. So how do we know which one to choose? Here are
some guidelines.

Cmdlets should generally be your first choice. They are designed to operate best
in the PowerShell environment.

Next, if there is a .NET class available that does what you want, that should be the
preferred solution. But keep in mind the limitations that we discussed in chapter 11
concerning paths and such.

If there isn’t a .NET class or you need to access the information remotely, use WMI.
There is good support for WMI with cmdlets and with the type accelerators.

Finally, if none of the other solutions suits your purpose and there is a COM
object available, use COM. Remember, however, you’ll need to look out for some of
the issues discussed earlier in the chapter.

There is another angle to consider when choosing to use one object model over
another. If you’re adapting existing code samples, your best option is to use whatever
the sample used. If the code sample you’re adapting is VBScript then COM and/or
WMI will likely be what you use. If you’re adapting a piece of C# or VB.Net code
then .NET is the usual answer.

In the end, the “best” answer is the one that gets the job done in the shortest time
with the least effort. PowerShell is all about pragmatics: maximal return for minimal
effort.

Actually there’s one more technology that we haven’t really covered but is
very important when administering Windows systems: ADSI. ADSI sup-
port was added very late in the release cycle for PowerShell V1. It follows
the same basic model used for WMI. See section B.8 for more information
and examples of how to use this.

12.4 SUMMARY

Chapter 12 covered the world of Windows management objects—WMI and COM.
These mechanisms are the kernel of the previous generations for Windows scripting
tools such as VBScript and JScript. Pretty much any scripting activity involved using
one or both of these object models. As a consequence, PowerShell also supports WMI
and COM along with the newer .NET frameworks.

For COM, we covered the following points:

AUTHOR’S
NOTE
SUMMARY 437

• We introduced the basic elements of COM and showed how to get a list of
ProgIDs.

• We discussed that PowerShell uses .NET for COM interop, so has the same lim-
itations as .NET.

• As with .NET objects, COM objects can be examined using the Get-Member
cmdlet.

• PowerShell support for COM collections is incomplete. As a result, they can’t be
addressed with the usual array notation square brackets. Instead, the Item()
parameterized property must be called explicitly. For example: if $windows
contains the desktop window collections returned from a Shell.Applica-
tion COM object, we cannot address the first window as $windows[0].
Instead, we use $windows.Item(0).

• Manipulating browser and shell windows.

• Getting a list of open browser windows.

• Using the WScript.Shell object to pop up message boxes.

• Sending keystroke sequences to automate a Windows application.

• Using the browser to look up a word in an online resource.

• Using the WinHTTP class to do network programming.

• Using MS agents to create an animated presentation, including spoken output.

• Using the ScriptControl to allow a PowerShell script to call functions written in
VBScript or JScript.

We also covered some of the issues you might run into using COM from PowerShell
and some of the available workarounds.

The second part of this chapter covered the use of WMI, briefly describing what it
is and why it matters. We discussed:

• Using the Get-WmiObject cmdlet to list available classes or to get a class
instance. To get classes on a remote system, add the parameter -Computer-
Name <Computer> to the command.

• The WMI object adapter and what it does.

• A limited comparison between VBScript and PowerShell when it comes to WMI
scripting.

• The type accelerators [WMI], [WMICLASS], and [WMISEARCHER] that Power-
Shell provides for the WMI types and how they can be used.

• How to use WMI methods and events.

• Modifying editable WMI object properties by changing the value and then call-
ing the object’s Put() method to set the changes.
438 CHAPTER 12 WINDOWS OBJECTS: COM AND WMI

We ended the chapter with a discussion of the wide variety of ways to accomplish a
task through all of these object models and provided a set of guidelines for favoring
one solution over another.

At this point, we’re done with our discussion of what PowerShell can do and how
we can use it. But there’s one more vital topic to discuss. By now it should be clear
that PowerShell is, in fact, very powerful. It gives you access to nearly all of Windows
through one tool. However, this power also has the potential to introduce risk, and so
the last, but by no means least, topic to cover is security and PowerShell. This is the
subject of the final chapter of this book.
SUMMARY 439

C H A P T E R 1 3

Security, security, security

13.1 Introduction to security 441
13.2 Security modeling 443
13.3 Securing the PowerShell

environment 449

13.4 Signing scripts 453
13.5 Writing secure scripts 465
13.6 Summary 474
With great power comes great responsibility.

 —Stan Lee, The Amazing Spiderman

In this chapter, we’ll review security modeling concepts, and then look at the security
features in PowerShell. We’ll also look at how to write secure scripts in PowerShell.
Boring, you say. Do we really need to know this stuff? Yeah, we do. In a connected
world, security is incredibly important. A small mistake can have huge consequences.
People will talk about a “zone of influence”—the idea that something that happens
far away can’t impact us. This idea is basically meaningless in a connected world.
Anyone anywhere can attack your system just like they were next door. We also have
to consider cascading consequences: a useful script that someone posts on his blog
may get copied thousands of times. If there is a security flaw in that script it will
propagate along with the script; get copied into new scripts, and so on. A small flaw
in the original script may now be replicated around the world. Now that we are all
appropriately terrified, let us proceed.

When discussing security and PowerShell, there’s only one thing to keep in mind.
PowerShell executes code. That’s what it does—that’s all it does. As a consequence, we
440

need to consider how having PowerShell on your system might introduce security
risks. Of course, this is not specific to PowerShell. It’s true of anything that runs
code—Perl, Python, even cmd.exe. Making sure that a system with PowerShell
installed is secure is the topic of the first part of this chapter. Once you have PowerShell
installed, of course you’re going to want to write, deploy, and execute scripts. The latter
portion of the chapter covers some approaches to writing secure PowerShell scripts.

13.1 INTRODUCTION TO SECURITY

We’ll begin our security discussion with some basic definitions. In this section, we’ll
look at what security is and what that means. We’ll also talk about what it isn’t, which
can be just as important.

13.1.1 What security is

Computer security is the field devoted to the creation of techniques and technologies
that will allow computers to be used in a secure manner. Obvious perhaps, but there
are two parts to the story. Secure means that the computer is protected against exter-
nal danger or loss of valuables (financial, personal, or otherwise). The flip side is that
the system has to remain useful. (There is a common joke in the security industry
that the only way to make a computer completely secure is to turn it off, disconnect
all of the cables, seal it in concrete, and dump it into the middle of the ocean. While
this makes for a pretty secure computer, it’s not a very useful one.) In approaching
security, security requirements must be balanced with utility. If the techniques needed
to secure a system are too hard to use, users won’t use them, and the system will be
unsecured. If they interfere with the basic tasks that need to be performed, they will
be disabled or bypassed and the system will be unsecured. Are we getting the picture?

13.1.2 What security is not

Security is not cryptography. This is oddly surprising to many people. Security uses
cryptography—it’s one of the main tools used to secure an environment. They are,
however, separate fields. The corollary is that unless you are a cryptographer, you
shouldn’t write your own cryptography code. It’s very hard. And even the experts
don’t always get it right. And even if it’s right today, it may be wrong tomorrow.

At the time this book was written, the MD5 hash algorithm, which had
been considered the gold standard for secure hashes, had been found to be
vulnerable.

The PowerShell environment, through .NET and the Windows platform, has access
to a variety of cryptographic tools for building secure systems. You should use these
tools instead of trying to roll your own. We’ll spend a considerable amount of time
on some of these tools later in this chapter.

AUTHOR’S
NOTE
INTRODUCTION TO SECURITY 441

13.1.3 Perception and security

One last thing. Regardless of what computer security is or is not, sometimes it is the
perception of security that matters most. Let’s take a look at a couple of stories that
illustrate this.

The Danom virus

As we have discussed, PowerShell can be used to write scripts. It can be used to create,
copy, and modify files. This means that, like any scripting or programming language,
it can be used to write viruses, worms, and other malware.

The term malware is short for malicious software and is used to generally
describe all of the forms of software (spyware, viruses, and so on) designed
to cause damage in a computing environment. This may be the only defi-
nition in the security vocabulary that everybody agrees on. Or maybe not.

The fact that PowerShell can be used for this purpose has not gone unnoticed in the
malware community.

In August 2005, a virus author created a proof-of-concept virus called Danom
(Monad backwards). This virus script was essentially a port of existing virus code to
the PowerShell language. This same virus code had previously been written in a vari-
ety of other scripting languages. It didn’t take advantage of any vulnerability in either
the operating system or the language interpreter. It required explicit and significant
user action to execute the virus code. In fact, all it really did was demonstrate that
PowerShell was a decent scripting language. There wasn’t even a delivery vehicle. In
other words, there was no way to distribute the malicious code. And with no mecha-
nism to distribute the virus code, the “threat” was purely hypothetical.

This “coding exercise” was noticed by a security researcher who then issued a bul-
letin about it. This bulletin was picked up, first by the blogs and later by members of
the popular press, without really investigating the details of the situation.

There were notable exceptions to this. For example, Scott Fulton at Tom’s
Hardware waited until he had the facts and then published a responsible,
accurate report on the situation. Thanks Scott!

Because of the work that was going on with the next generation of Windows at the
time (the Vista release), the press called this the first Vista virus. The Microsoft secu-
rity response team members, who are busy analyzing real threats and can’t track all of
the new projects that are being worked on, responded by saying that it wasn’t a Vista
virus because PowerShell wasn’t in the official list of features for Vista at that time.
The press immediately turned this into “PowerShell cancelled due to virus threat”.
None of this was true, of course, but it made a good headline and lots of people, even
inside Microsoft, believed the story.

AUTHOR’S
NOTE

AUTHOR’S
NOTE
442 CHAPTER 13 SECURITY, SECURITY, SECURITY

What was gratifying was how the community responded to all of this coverage.
They reviewed the virus code and the security measures that the PowerShell team had
designed into the product and saw that Danom presented no significant threat.

Even sites not known for being strong Microsoft supporters responded in
a mature, responsible, and supportive way. Thanks to everyone who help
get the real story out. Community support is very important to the Power-
Shell team, and we really appreciate the help.

With the help of the community and some aggressive blogging, the tide was turned
and people realized that there was really nothing there. All returned to normal, at
least for a while.

The MSH/Cibyz worm

Almost exactly one year later, in August 2006, the MSH/Cibyz worm was released.
This was essentially the Danom code with some updates and bug fixes.

In between the first and second releases, the malware dictionary had been
revised, so the second time around, the same code was reclassified as a
worm instead of a virus. It’s like being at a ball game listening to the guy
handing out today’s program sheets: “Programs! Programs! Get your pro-
grams! You can’t tell a worm from a virus without a program!”

This time, there was a delivery vehicle using one of the peer-to-peer networks. The
story was picked up by the blogging community initially, but eventually a large secu-
rity software vendor issued a press release with an inflammatory title. The body of the
release, however, essentially said “there’s nothing to see here. These aren’t the droids
you’re looking for. Please move along.” But it still generated discussion and rumors
for about a week.

The moral of the story is that it pays to investigate security alerts rather than just
react to headlines. Without being properly informed, it’s impossible to plan appro-
priate action, and planning is the key to establishing a secure environment. Since one
of the best tools for planning is security modeling, we’ll spend the next couple of sec-
tions discussing these techniques.

13.2 SECURITY MODELING

In this section, we’ll briefly review some of the theories and concepts that have been
developed to help build secure systems. We’ll review the concepts of threats, vulnera-
bilities, and attacks. We’ll cover the basics of threat modeling and why it’s important.
Note that this is an active and rapidly changing area of research. Theories and
approaches are postulated, applied, and refuted over very short periods of time. The
theoretical material we present in this section may even be obsolete by the time you
read this. Still, having an awareness of the approaches that are being developed for
building secure systems is always beneficial.

AUTHOR’S
NOTE

AUTHOR’S
NOTE
SECURITY MODELING 443

13.2.1 Introduction to threat modeling

Threat modeling is a systematic approach to identifying and categorizing threats to a
system. So what does that mean? A model is a simplified representation of a system
with unnecessary or unimportant details left out. By building a model, we can focus
on the details that matter and ignore the ones that don’t. Modern computer systems
are too complex to address every detail. We have to focus our attention on what mat-
ters most.

Let’s look at some more definitions. A threat to a system is “a potential event that
will have unpleasant or undesirable consequences”. A vulnerability is a weakness in
the design or implementation of a system that an attacker may exploit to cause one of
these undesirable events. An attack is when someone takes advantage of these vulner-
abilities to gain some advantage that they are not otherwise permitted to have.

Back to modeling. The point of a model is to have a formal approach for looking
at threats and vulnerabilities with the idea of defeating attacks. This is important
because we can quite literally spend the rest of eternity trying to guard a system
against things that don’t matter. If we don’t have a way of focusing our efforts, the
result will be a solution that will be useless at best.

13.2.2 Classifying threats using the STRIDE model

STRIDE is a well-known threat classification model. STRIDE is an acronym for Spoof-
ing, Tampering, Repudiation, Information Disclosure, and Elevation of Privilege. It’s
a way to categorize all of the significant threats to a system. Remember—a threat is
something the attacker wants to happen, which means it’s something we don’t want.
The idea is that if we model all of the STRIDE threat classifications we have a decent
chance of covering the most important areas. Explanations for each of the compo-
nents of STRIDE are shown in table 13.1.

Table 13.1 The threat classifications in the STRIDE model

Threat Classification Explanation

Spoofing identity Spoofing refers to various ways of assuming the identity of another user
for the duration of a task.

Tampering with data Tampering simply means of changing data. Note that this does not imply
information disclosure—simple corruption may be all that is achieved.

Repudiation From an attacker’s perspective, repudiation essentially means covering
your tracks. A particular act can not be traced and attributed to the com-
mitter of the act.

Information Disclosure Information disclosure is simply allowing unauthorized persons access to
sensitive information such as credit card numbers, passwords, and so on.

continued on next page
444 CHAPTER 13 SECURITY, SECURITY, SECURITY

For more information on STRIDE, see Writing Secure Code by Michael Howard and
David LeBlanc, available from Microsoft Press.

Now that we have a system for understanding and classifying threats, let’s look at
the remaining pieces we need to build the threat model.

13.2.3 Security basics: Threats, assets, and mitigations

There are three parts to building a security model: threats, assets, and mitigations. We
talked about threats at length in the previous section. Assets are things that motivate
the attacker to launch an attack. These assets may be things that are of direct value,
such as credit card numbers or other financial information. They may also be of indi-
rect value, such as code execution. This is an asset because once we have the ability to
execute code on a machine, we can use these resources to do things such as send spam
or execute distributed denial of service attacks against other targets.

Mitigation is what you’re doing to mitigate those threats. The dictionary defini-
tion of mitigation is to “to cause to become less harsh or severe”. We use this term
instead of prevent because it may well be that the activity you’re mitigating is neces-
sary; for example, the ability to execute code in PowerShell can’t be prevented, since
that’s its purpose. But we want to allow only authorized users to be able to execute
approved scripts. The threat of unauthorized script execution is mitigated though a
variety of approaches we describe later in this chapter. Now let’s look at a few things
to keep in mind when securing a system.

Avoid lawn gnome mitigation

There is a tendency, when trying to mitigate problems or otherwise reduce the attack
surface of a system, to focus on reducing attacks in a particular area instead of looking
at the system as a whole. This approach can add complexity to the system without
actually increasing security. This approach is lawn gnome mitigation. The story goes
like this. We hire a security consultant to secure our home. He drives up to our house,
parks, gets out, and stands on the sidewalk looking at the house. After a while, he says
that he sees where the vulnerability lies. He goes to the trunk of his car, takes out a
ceramic lawn gnome (as illustrated in figure 13.1), and places it on the lawn between

Denial of service A denial of service (or DOS) attack means some form of resource exhaus-
tion takes place. It could be network bandwidth, CPU cycles, or disk
space. The problem with DOS attacks is that they are easy to launch anon-
ymously and sometimes it’s difficult to tell if it’s actually an attack or that
$2.99 special that you just announced on your website that’s causing a
sudden burst of network traffic.

Elevation of Privilege In elevation of privilege attacks, an unprivileged user or process gains priv-
ileged access.

Table 13.1 The threat classifications in the STRIDE model (continued)

Threat Classification Explanation
SECURITY MODELING 445

himself and the front door of the house. “I have mitigated the threat,” he says. “That
will be $2,000 please.”

Has our high-priced security consultant actually mitigated a threat? As a matter of
fact, he has. A burglar trying to break into the house, who crosses the lawn at that
exact spot, will now trip over a lawn gnome. Of course, the burglar could go around
it, or come at the house from a different direction. In fact, our house isn’t really any
safer, and we now have an ugly ceramic statue in the middle of our lawn that we have
to mow around.

There is a variation of this approach that is considered legitimate sometimes
called “picket-fence” mitigation. A picket fence has holes in it, so we put
another one behind it. And if there are still holes then we keep adding fences
until there are no more holes. This is equivalent to dumping truckloads of
lawn gnomes on our property until the house is surrounded by a 30-foot-
high wall of ceramic gnomes. It’ll work, but it’s not very attractive.

The moral of this story is that, when securing a system, don’t add unnecessary or
inappropriate checks. We have to look at the system as a whole. This is particularly
true when writing code. The more lawn gnomes we add, the more code we add to the
system. Each new line of code introduces new possibilities for errors, and these errors
can, in turn, become additional vulnerabilities.

Blacklisting/whitelisting

Short and sweet—blacklisting is saying who’s bad and whitelisting is saying who’s
good. In general, whitelisting is preferred. Assume that the world is bad and we only
trust people we know. This is inherently the most secure approach to use with Power-
Shell. The number of people we trust to give us scripts to run is much smaller than
the number of people we don’t trust to run scripts. PowerShell supports the use of
script signing to verify the identity of a script publisher and also validate the integrity
of a published script. This is discussed at length in section 13.4.

Authentication authorization and roles

Authentication is verifying the identity of the user. Authorization is determining whether
the user is authorized to perform an action. Finally, roles are groupings of activities for
which authorization can be granted. By grouping multiple activities into a role, it

Figure 13.1

A brave and noble Lawn

Gnome protecting a home in

Kitchener, Ontario, Canada.

Hopefully it didn’t cost the

owner $2,000.

AUTHOR’S
NOTE
446 CHAPTER 13 SECURITY, SECURITY, SECURITY

becomes easier to manage authorization. When users are assigned a particular role, they
are automatically authorized to perform all of the activities associated with that role.
PowerShell depends primarily on the operating system for authentication and autho-
rization, and currently has no special support for roles, unfortunately. A PowerShell
script operates with the capabilities associated with the security token of the user who
is running the script. We will see an example later in the chapter where it is possible to
run a program from PowerShell as a different user, however.

Input validation

The rule is that we must validate any input received from outside our script. In script-
ing, this is the second most important rule for writing secure scripts. (The most
important rule is “don’t run unknown or untrusted scripts”.)

Most scripting environments have the ability to dynamically compile and execute
code (this is one of the things that makes them dynamic languages). It’s tempting to
use this capability to simplify our code. Say the user needs to do some arithmetic cal-
culations in her script. In PowerShell, we could just pass this code directly to the
Invoke-Expression cmdlet and let it evaluate the expression.

PS (1) > $userInput = "2+2"

Now we’ll use Invoke-Expression to execute the command:

PS (2) > invoke-expression $userInput
4

Wasn’t that easy! But what if the user types the following?

PS (3) > $userInput = "2+2; 'Hi there'"
PS (4) > invoke-expression $userInput
4
Hi there

It still executed the calculation, but it also executed the code after the semicolon. In
this example, it was a harmless statement. But it might have been something like

$userInput = "2+2; del –rec –force c:\"

If this statement were executed, it would try to delete everything on your C: drive.
Which would be bad.

There are other places where you need to do input validation. If the user is sup-
plying a path you should make sure that it’s a path that the user actually should have
access to. For example:

$userInput = "mydata.txt"
get-content $userInput

This fragment of script will return the contents of the file “mydata.txt” from the cur-
rent directory. This is what the script author intended. But because the script is not
doing any path checking, the user could have specified a path like

$userInput = "..\bob_dobbs\mydata.txt"
SECURITY MODELING 447

in which case he might get the contents of another user’s file. If instead, the script
were written as

PS (1) > $userinput = "..\bob_dobbs\mydata.txt"
PS (2) > $safePath = join-path . `
>> (split-path -leaf $userInput)
>>
PS (3) > $safePath
.\mydata.txt

Then, despite providing a relative path, users can still only get their own data. Alter-
natively, we may wish to generate an error message explaining that it’s an invalid file
name:

PS (5) > if (split-path -parent $userInput) {
>> "Invalid file name: $userInput"
>> }
>>
Invalid file name: ..\bob_dobbs\mydata.txt

But you need to be careful with this; you may inadvertently leak information about
the system through the error message.

People sometimes find it hard to understand why this is an issue. Let’s look
at an example. Say you’re logging into a system. If you enter a user name
and password and the system responds with “invalid account” if the user
name is wrong and “invalid password” if the password is wrong, the attack-
er now has a way of finding out whether or not an account name is valid.
In a sense, they’ve now won half the battle.

You need to trade off being friendly to the user with maintaining a secure system. So
even in quite simple systems, it’s fairly tricky to get this kind of thing right.

Code injection

Code injection is closely related to the input validation. In fact, the first couple exam-
ples that we looked at in the input validation section are code injection attacks. When
writing PowerShell code, any use of Invoke-Expression is suspect. There are usu-
ally other ways of doing the same thing that don’t require the use of Invoke-
Expression. But there are other ways of injecting code into a PowerShell session.
Scripts are the most obvious one. Every time a script is called, the script is loaded,
parsed, and executed. Not only must you not execute scripts from unknown sources,
you must make sure that no one can tamper with your own scripts. In the next sec-
tion, we’ll go over the features in PowerShell for doing exactly that.

Because PowerShell exists in mixed-language environments, you also need to be
careful with other types of code injection attacks. The most common example is SQL
injection attacks. This is the classic attack in the Web application world. The basic
attack mechanism is the same—unvalidated user input is used to construct an SQL

AUTHOR’S
NOTE
448 CHAPTER 13 SECURITY, SECURITY, SECURITY

query. This query is then passed to the database and bad things happen. The query is
being executed on behalf of the user, so there may be an information disclosure
attack. The query may delete data from the database, in which case you’re looking at
a DOS attack.

Even more common in the PowerShell environment is the use of languages such
as VBScript and/or cmd.exe batch scripts. All of these file types represent opportuni-
ties for code injection.

At this point, we’ve covered the basic principles for creating a secure computing
environment. Now let’s take a look at the features in PowerShell that were designed
to support these principles.

13.3 SECURING THE POWERSHELL ENVIRONMENT

The whole point of PowerShell is to execute scripts that automate system manage-
ment tasks. As a consequence, there is no such thing as an inherently “safe” Power-
Shell script. PowerShell has no concept of sandboxing; that is, executing in a safe
restricted environment. We must treat all PowerShell scripts as if they were executa-
bles. Because of this, when PowerShell is installed, it does a number of things to be
secure by default. In the next few sections, we’ll go over these features.

13.3.1 Secure by default

In this section, we’ll go over the elements of the PowerShell installation process that
are intended to meet the requirement that it be secure by default. Secure by default
means that simply installing PowerShell on a system should not introduce any secu-
rity issues.

The default file association for PowerShell is Notepad

File association is the way Windows figures out what application to launch as the
default handler for files having a particular extension. For many scripting languages,
the default association launches the interpreter for that language. This has led to
many virus outbreaks. With PowerShell, the default file association for the .ps1
extension is notepad.exe. This means that if an attacker does manage to get a
script onto your computer and you accidentally double-click on this script, instead of
executing the script, it will open up in Notepad, at which point you can review the
hacker’s code. Or just delete the script.

No remote access to PowerShell

There is no remote access to PowerShell. That is, there is no way for an external user
to directly invoke the PowerShell engine. In order to remotely execute PowerShell code,
the attacker has to leverage some other mechanism to allow them to access PowerShell.
SECURING THE POWERSHELL ENVIRONMENT 449

No execution of scripts by default

PowerShell is installed in such a way that it won’t run scripts by default. It can only be
used as an interactive command interpreter.

Before scripts can be run, the user has to take explicit action to change the execu-
tion policy for PowerShell to allow script execution. In the default configuration, the
only way to execute code is if the user manually starts PowerShell and types com-
mands in at the prompt. This is covered in detail in the section 13.3.3.

So PowerShell is secure by default because it doesn’t do much of anything. Now
let’s see how to make it useful by enabling script execution. But first, we’ll cover a
somewhat more mundane topic. PowerShell uses the PATH environment variable to
find commands. This has some security implications, so we’ll review those first before
we talk abut how to enable scripting.

13.3.2 Managing the command path

A common local attack vector involves the PATH and PATHEXT environment vari-
ables. These variables control where commands are found and which files are consid-
ered to be executable. The PATHEXT variable lists the extensions of all of the file
types that PowerShell will try to execute directly through the CreateProcess()
API. The PATH variable, of course, controls what directories PowerShell will look in
when it searches for external commands. If an attacker can compromise these vari-
ables or any of the files or directories that they reference, they can use a Trojan Horse
attack—making something dangerous appear harmless.

OK, who thinks a 20-foot-high wooden horse looks harmless? If you saw a
20-foot wooden horse appear in your driveway, would you say “Oh, look
dear, let’s bring this giant wooden horse that we’ve never seen before into
our house. Perhaps it will be our pet. I’ve always wanted a giant wooden
horse as a pet!”?

The most important mitigation for this type of attack is to not include the current
directory in your command search path. This is the default in PowerShell. This
guards against the situation where you cd into an untrusted user’s directory and then
execute what you think is a trusted system command such as ipconfig.exe. If we
execute commands out of the current directory and the user had placed a Trojan
ipconfig.exe command in this directory, their command would execute with all
of the privileges we have as a user. This is, shall we say, not a good thing. In general,
it’s best to leave the current path out of $ENV:PATH.

There is one other thing to consider in this situation. The cmd.exe interpreter
does execute out of the current directory so if you run a .cmd script from PowerShell
in an untrusted directory, there is a risk that the batch file could be compromised by
Trojan programs.

AUTHOR’S
NOTE
450 CHAPTER 13 SECURITY, SECURITY, SECURITY

13.3.3 Choosing a script execution policy

When PowerShell is installed, script execution is disabled by default. This is con-
trolled by the PowerShell execution policy. PowerShell defines four execution policies:
Restricted, AllSigned, RemoteSigned, and Unrestricted. The details of these policies
are shown in table 13.2.

The execution policy is controlled by a registry key. Two cmdlets, Get-Execution-
Policy and Set-ExecutionPolicy, can be used to change this key. First we’ll
take a look at where the information is stored in the registry.

Finding the current script execution policy

We’ll use the registry provider to find out the current execution policy setting. First
we need to cd into the area of the registry containing the PowerShell configuration.

PS (1) > cd hklm:\software\microsoft\PowerShell
PS (2) > cd "$($host.version.major)\ShellIDs\$ShellID"

Now we’ll use the Get-ItemProperty cmdlet to access the ExecutionPolicy
property.

Table 13.2 Descriptions of the four execution policies

Policy Description

Restricted This is the default execution policy on installation. When this policy is in effect,
script execution is disabled. PowerShell itself is not disabled. It may still be used as
an interactive command interpreter. While this is the most secure policy, it severely
impacts our ability to use PowerShell for automation.

AllSigned When the execution policy is AllSigned, scripts can be executed, but they must be
Authenticode-signed before they will run. When running a signed script, you will be
asked if you want to trust the signer of the script. Section 13.4 covers the details of
script signing. This is still a secure policy setting, but it makes script development
difficult. In an environment where scripts will be deployed rather than created, this
is the best policy.

RemoteSigned RemoteSigned requires that all scripts that are downloaded from a remote location
must be Authenticode-signed before they can be executed. Note that this depends
on the application doing the download to mark the script as coming from a remote
location. Not all applications may do this. Anything downloaded by Internet
Explorer 6.0 or above, Outlook, or Outlook Express will be properly marked. This is
the minimum recommended execution policy setting. It is the best policy setting
for script development.

Unrestricted When the execution policy is unrestricted, PowerShell will run any script. It will
still prompt the user when it encounters a script that has been downloaded how-
ever. This is the least secure setting. It is not recommend that you use this set-
ting, but it may be necessary in some developer scenarios where RemoteSigned
is still too restrictive.
SECURING THE POWERSHELL ENVIRONMENT 451

PS (3) > Get-ItemProperty. ExecutionPolicy

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL
 _MACHINE\software\microsoft\PowerShell\1\Shell
 Ids\Microsoft.PowerShell
PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL
 _MACHINE\software\microsoft\PowerShell\1\Shell
 Ids

PSChildName : Microsoft.PowerShell
PSDrive : HKLM
PSProvider : Microsoft.PowerShell.Core\Registry
ExecutionPolicy : Restricted

Changing the execution policy

Now let’s use Set-ExecutionPolicy to change the policy to RemoteSigned.

PS (4) > Set-ExecutionPolicy RemoteSigned

And again use Get-ItemProperty to verify that the value has been changed.

PS (5) > Get-ItemProperty. ExecutionPolicy

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL
 _MACHINE\software\microsoft\PowerShell\1\Shell
 Ids\Microsoft.PowerShell
PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL
 _MACHINE\software\microsoft\PowerShell\1\Shell
 Ids
PSChildName : Microsoft.PowerShell
PSDrive : HKLM
PSProvider : Microsoft.PowerShell.Core\Registry
ExecutionPolicy : RemoteSigned

Of course, it’s much easier to check it with Get-ExecutionPolicy:

PS (6) > Get-ExecutionPolicy
RemoteSigned

So why did we bother looking at the registry? Because it’s always useful to know how
things work and where they’re stored. It may be that you’re in a situation where you
need to enable (or disable) script execution and aren’t able to use an interactive
PowerShell session to do it.

Remember, execution policy depends heavily on the signing infrastructure to
determine whether or not a script should be run. In the next section, we’ll review the
overall script signing architecture in Windows and look at how to sign scripts in
PowerShell.
452 CHAPTER 13 SECURITY, SECURITY, SECURITY

13.4 SIGNING SCRIPTS

Signing a script is the process of adding extra information that identifies the publisher
of the script in a secure way. By secure way, we mean that it is done in such a way that
you can verify:

• that the script really was signed by the correct person.

• that the contents of the script haven’t been changed in any way since it was signed.

13.4.1 How public key encryption and one-way hashing work

Script signing is accomplished using two technologies: public key encryption and one-
way hashes. Public key encryption is important because it uses two keys: a private key
for encrypting information and a second public key for decrypting the data encrypted
with the private key. The other technology we need is a one-way hash function. This
is a type of function where it’s easy to calculate the output for any input, but is very
hard to recover the input if you have only the output. These hash functions also need
to be collision resistant. In other words, it should be highly unlikely that two inputs
produce the same output. Here’s how these technologies are used to verify the
authenticity and integrity of the script.

• First the script author (or publisher) calculates a one-way hash of the contents
of the script using a secure hashing algorithm.

• This hash is then encrypted with the publisher’s private key and attached to the
script in the form of a comment block.

• The script is then delivered to the consumer who is going to run the script.

• Before the script is run, PowerShell removes the signature block, and then cal-
culates its own one-way hash of the document using the same algorithm as the
publisher.

• Using the publisher’s public decryption key, PowerShell decrypts the hash con-
tained in the signature comment block.

• Finally, it compares the hash it calculated against the one that was recovered
from the signature block. If they match, the script was created by the owner of
the private key and hasn’t been tampered with. If they don’t match, the script is
rejected. It’s either not legitimately signed by the publisher or it has been tam-
pered with.

There is one small thing that we’ve skipped in this discussion. How do we get the
right public key to decrypt the signature in the first place? Calling up the publisher
on the telephone every time we run the script is not going to work. This is where
signing authorities and certificates come in. First we’ll look the role of a signing
authority in creating certificates. Then we’ll talk about how we can create our own
self-signed certificates. This is a two stage process: creating a local signing authority
and then using that authority to issue a certificate.
SIGNING SCRIPTS 453

13.4.2 Signing authorities and certificates

Making all of this signing stuff work requires a way of getting the public key associated
with a signer’s identity. This is done using the signing certificate. A certificate is a piece
of data that uses a digital signature to bind together a public key and an identity. But
wait! If it’s signed then aren’t we back we started? Now we need to get a public key to
verify who we should get the public key from. Yikes. This is where signing authorities
come in. These are well-known, trusted third-party organizations from which authors
can purchase signing certificates. When someone wants to be able to sign scripts, they
contact a signing authority to purchase a certificate. The signing authority then veri-
fies the identity of the party requesting the certificate. Once this is done, the signer
receives the private key and can now start signing documents. Part of the signature
includes the user’s identity, which will be verified using the public key of the certificate
that you look up at the signing authority. This is called the chain of trust.

All of this machinery is part of what’s called a Public Key Infrastructure or PKI. In
fact, there are a number of additional pieces necessary to make it all work. One of
these pieces is the local certificate store. This store is used as a local cache for certifi-
cates. If we had to establish a network connection to the signing authority every time
we wanted to do something, it wouldn’t work very well. Also, we wouldn’t be able to
work when we weren’t connected to a network. By caching the certificates locally, we
can avoid these problems. (There are other intermediate tiers in the trust chain, and
some other details such as expiry and revocation that we’re not going to cover here
because they are well documented elsewhere. MSDN has a good discussion of this
material, for example.)

So do we need to contact a signing authority before we can safely run scripts? This
is the topic of the next section on self-signed certificates.

Self-signed certificates

So what does the average person do if she wants to sign scripts but doesn’t want to
invest time and money getting a certificate from a signing authority? The answer is
that we can use self-signed certificates. This is a certificate we create for ourselves
where the computer itself becomes the signing authority. Obtaining this type of cer-
tificate doesn’t have the issues associated with a public signing authority. It’s free and
easy to get, however other computers won’t trust our computer as a valid authority
and so won’t run scripts that we sign with this certificate.

If you create a self-signed certificate, be sure to enable strong private-key
protection on your certificate. This will prevent other programs from sign-
ing scripts on your behalf. We’ll see how to do this later in the chapter.

This sounds somewhat less that useful, but it allows us to control what scripts can be
run on our computer. In the next section, we’ll see how to create a self-signed certificate.

AUTHOR’S
NOTE
454 CHAPTER 13 SECURITY, SECURITY, SECURITY

13.4.3 Creating a self-signed certificate

To create a self-signed certificate, we’ll use the MakeCert.exe program. This utility
is included as part of the Microsoft .NET Framework SDK and the Microsoft
Platform SDK. These can be freely downloaded from Microsoft if you don’t already
have them. Even if they are installed on the computer, we may have to modify the
setting of $ENV:PATH so it includes the directory that contains these commands.
You can use Get-Command to see whether makecert.exe is installed and where it
is located.

PS (1) > get-command makecert.exe | fl

Name : makecert.exe
CommandType : Application
Definition : C:\Program Files\Microsoft Visual Studio 8\SDK
 \v2.0\Bin\makecert.exe
Extension : .exe
Path : C:\Program Files\Microsoft Visual Studio 8\SDK
 \v2.0\Bin\makecert.exe
FileVersionInfo : File: C:\Program Files\Microsoft V
 isual Studio 8\SDK\v2.0\Bin\makecert.exe
 InternalName: MAKECERT.EXE
 OriginalFilename: MAKECERT.EXE
 FileVersion: 5.131.3790.0 (srv03_rtm.0303
 24-2048)
 FileDescription: ECM MakeCert
 Product: Microsoftr Windowsr Operatin
 g System
 ProductVersion: 5.131.3790.0
 Debug: False
 Patched: False
 PreRelease: False
 PrivateBuild: False
 SpecialBuild: False
 Language: English (United States)

We can see that it’s installed in the Visual Studio SDK directory (this doesn’t mean
you have to run out and buy Visual Studio, by the way. The free SDK is all you need).
This is a fairly complex command with a lot of options. We’re going to get set up for
signing in two steps—creating a local certificate authority and using that authority to
create a signing certificate.

Creating a local certificate authority

First, we’re going to run the following command to create a local certificate authority
for our computer. Let’s run the command.

PS (2) > makecert -n "CN=PowerShell Local Certificate Root" `
>> -a sha1 -eku 1.3.6.1.5.5.7.3.3 -r -sv root.pvk root.cer `
>> -ss Root -sr localMachine
>>
Succeeded
SIGNING SCRIPTS 455

When we run this command, a dialog box will appear, asking us to establish our iden-
tity by entering a password for this signing authority. This is shown in figure 13.2.

So what did this command actually do? We’ve instructed the command to create
a self-signed certificate that will be used for code-signing purposes. We want this cer-
tificate placed in the root certificate store on the local machine. We’ve also said that
we want to use SHA-1 (Secure Hash Algorithm, version 1) for hashing the docu-
ment. Table 13.3 has further explanation for each of the parameters we’ve specified
to the command.

Table 13.3 MakeCert parameters used to create a self-signing authority

MakeCert parameter Description

-r Instruct the utility to create a self-signed certificate.

-n "CN=PowerShell
Local Certificate Root"

This allows us to specify the X.500 name to use for the certificate subject.
We’re going to use “CN= PowerShell Local Certificate Root”.

-a sha1 This selects the algorithm used to generate the signature hash. It can be
either “md5” or “sha1”. The default is “md5” but this is no longer consid-
ered robust so we’ll choose “sha1” instead.

-eku 1.3.6.1.5.5.7.3.3 Inserts a set of comma-separated Enhanced Key Usage (eku) object identi-
fiers (or OIDs) into the certificate. In our case, the enhanced use we want
is for code signing. That is, we want to create a key for the particular pur-
pose of signing executable files.

-sv root.pvk Specify the name of the file where the private key is to be written. In this
example, a file called root.pvk will be created in the current directory.

-ss Root Subject’s certificate store name that stores the output certificate.

-sr localMachine Specify whether the certificate is to be created in the current user’s store
or the local machine store. The default is CurrentUser, but we want this
certificate to be machine-wide so we specify LocalMachine.

Figure 13.2 What you see when you run makecert to create the self-

signing authority.
456 CHAPTER 13 SECURITY, SECURITY, SECURITY

Creating the signing certificate

Now that we’ve created a signing authority, we need to give ourselves a signing certif-
icate. Again, we can also do this with MakeCert.exe by running the following
command:

PS (3) > makecert -pe -n "CN=PowerShell User" -ss MY -a sha1 `
>> -eku 1.3.6.1.5.5.7.3.3 -iv root.pvk -ic root.cer
>>
Succeeded
PS (4) >

This will create a certificate file in root.cer using the private key stored in
root.pvk file. Table 13.4 explains the options we’re using in this command.

Let’s check out what we’ve created. Let’s look at for files named “root” in the current
directory:

PS (10) > dir root.*

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\working\

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 8/12/2006 6:32 PM 591 root.cer
-a--- 8/12/2006 6:32 PM 636 root.pvk

In the first step, we create the file root.pvk—the private key—for our signing authority.
In the second step, we create the certificate file root.cer that we need for signing. How-
ever, the more important question is whether or not we created the certificate in the
certificate store. We can verify this using the Certificate snap-in in MMC. Figure 13.3
shows what this looks like.

Table 13.4 MakeCert parameters used to create a code-signing certificate

MakeCert parameter Description

-pe Marks the generated private key as exportable. This
allows the private key to be included in the certificate.

-n "CN=PowerShell User" Specifies the X.500 name for the signer.

-ss MY Specifies the subject’s certificate store name that
stores the output certificate.

-a sha1 As before, specifies the hash algorithm to use.

-eku 1.3.6.1.5.5.7.3.3 Specifies that we want code-signing certificates.

-iv root.pvk Specifies where the certificate issuer’s .pvk private key
file is. (We created this file in the previous step).

-ic root.cer Specifies the issuer’s certificate file should be written.
SIGNING SCRIPTS 457

Of course, this is PowerShell, so there must be a way to verify this from the command
line. We can do this using the PowerShell certificate provider by typing the following
command:

PS (13) > dir cert:\CurrentUser\My -codesigning | fl

Subject : CN=PowerShell User
Issuer : CN=PowerShell Local Certificate Root
Thumbprint : 145F9E3BF835CDA7DC21BD07BDB26B7FCFEA0687
FriendlyName :
NotBefore : 8/12/2006 6:34:31 PM
NotAfter : 12/31/2039 3:59:59 PM
Extensions : {System.Security.Cryptography.Oid, System.Securit
 y.Cryptography.Oid}

If the certificate was created, the output shows us the thumbprint of the certificate,
which contains authentication data for “PowerShell User”. Now we have everything
set up! We’ve established a signing authority and issued ourselves a certificate. Now
let’s move on and sign some scripts.

13.4.4 Using a certificate to sign a script

Now that we have a self-signed certificate, we can sign scripts. In this section, we’ll go
through the steps to do this. We’ll also look at how to change the script execution
policy to verify that our scripts are signed properly.

Setting up a test script

First, let’s create an unsigned script that we can use for testing purposes:

PS (16) > '"Hello there"' > test-script.ps1

Now, assuming that our execution policy is currently set to something like Remote-
Signed that lets us run local scripts, let’s run test-script.ps1.

PS (17) > ./test-script.ps1
Hello there

Figure 13.3 Verifying that the certificates have been created from the Certif-

icates snap-in.
458 CHAPTER 13 SECURITY, SECURITY, SECURITY

Now change the execution policy to AllSigned and verify that we can’t run
unsigned scripts any longer. We’ll use Set-ExecutionPolicy:

PS (18) > Set-ExecutionPolicy AllSigned

Now when we try to run the script, it will fail.

PS (19) > ./test-script.ps1
File C:\Temp\test-script.ps1 cannot be loaded. The file C:\Temp\

test-script.ps1 is not digitally signed. The script will not exe
cute on the system. Please see "get-help about_signing" for more
 details..
At line:1 char:17
+ ./test-script.ps1 <<<<

The error message tells us that the script is not signed and suggests a help topic that
will explain what’s going on. Now let’s sign the script.

Signing the test script

First we need to get a certificate object to use to sign the script. We use the Power-
Shell certificate provider to do this.

PS (20) > $cert = @(Get-ChildItem cert:\CurrentUser\My `
>> -codesigning)[0]
>>
PS (21) > $cert

 Directory: Microsoft.PowerShell.Security\Certificate::Curren
 tUser\My

Thumbprint Subject
---------- -------
145F9E3BF835CDA7DC21BD07BDB26B7FCFEA0687 CN=PowerShell User

This shows that we have a certificate object in $cert. Now we’ll use the Set-
AuthenticodeSignature (remember, Tab-completion works on cmdlet names)
cmdlet to sign this file:

PS (22) > Set-AuthenticodeSignature test-script.ps1 $cert

 Directory: C:\Temp

SignerCertificate Status Path
----------------- ------ ----
145F9E3BF835CDA7DC21BD07BDB26B7FCFEA0687 Valid test-sc...

This cmdlet returns the signature information for the signed file. Now let’s try to run it.

PS (23) > ./test-script

Do you want to run software from this untrusted publisher?
File C:\Temp\test-script.ps1 is published by CN=PowerShell User
and is not trusted on your system. Only run scripts from trusted
SIGNING SCRIPTS 459

 publishers.
[V] Never run [D] Do not run [R] Run once [A] Always run
[?] Help(default is "D"): a
Hello there

Notice that we are prompted to confirm that this signing authority should be trusted.
Assuming we trust ourselves, we answer that we should always trust the signing
authority we created. Now let’s run this script again.

PS (24) > ./test-script
Hello there

This time, we didn’t get prompted, since we’ve told the system that this certificate
should always be trusted.

So what exactly happened to the script? It used to be one line long. Let’s look at
the beginning of the script. We’ll use the Select-Object cmdlet to get the first 10
lines of the file:

PS (25) > gc test-script.ps1 | Select-Object -first 10
"Hello there"

SIG # Begin signature block
MIIEMwYJKoZIhvcNAQcCoIIEJDCCBCACAQExCzAJBgUrDgMCGgUAMGkGCisGAQQB
gjcCAQSgWzBZMDQGCisGAQQBgjcCAR4wJgIDAQAABBAfzDtgWUsITrck0sYpfvNR
AgEAAgEAAgEAAgEAAgEAMCEwCQYFKw4DAhoFAAQU0O2MiFZBx/X1iLwTml3Dg6o3
iOygggI9MIICOTCCAaagAwIBAgIQ0QlVf5hB+oZM3DApkhHZMTAJBgUrDgMCHQUA
MCwxKjAoBgNVBAMTIVBvd2VyU2hlbGwgTG9jYWwgQ2VydGlmaWNhdGUgUm9vdDAe
Fw0wNjA4MTMwMTM0MzFaFw0zOTEyMzEyMzU5NTlaMBoxGDAWBgNVBAMTD1Bvd2Vy
U2hlbGwgVXNlcjCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEAtB75pWZTD5Jo

How long is the file? Let’s check:

PS (26) > (gc test-script.ps1).count
27

Signing the file increased the size from one line to 27. As you can see, signing a file
adds a lot of ugly comments to the end of the file. We can use the Get-Authenti-
codeSignature to retrieve the signature information from the file:

PS (28) > Get-AuthenticodeSignature test-script.ps1 | fl

SignerCertificate : [Subject]
 CN=PowerShell User

 [Issuer]
 CN=PowerShell Local Certificate Root

 [Serial Number]
 D109557F9841FA864CDC30299211D931

 [Not Before]
 8/12/2006 6:34:31 PM
460 CHAPTER 13 SECURITY, SECURITY, SECURITY

 [Not After]
 12/31/2039 3:59:59 PM

 [Thumbprint]
 145F9E3BF835CDA7DC21BD07BDB26B7FCFEA0
 687

TimeStamperCertificate :

Status : Valid
StatusMessage : Signature verified.
Path : C:\Temp\test-script.ps1

Among other things, this shows you who signed the file (PowerShell User) and who
issued the certificate (PowerShell Local Certificate Root), both of which we’ve just
created. Now let’s see what happens if we tamper with this file.

Testing the integrity of the script

We’ll use an editor and duplicate the “Hello there” line in the script.

PS (29) > notepad test-script.ps1

So the file now looks like:

PS (30) > gc test-script.ps1 | Select-Object -first 10
"Hello there"
"Hello there"

SIG # Begin signature block
MIIEMwYJKoZIhvcNAQcCoIIEJDCCBCACAQExCzAJBgUrDgMCGgUAMGkGCisGAQQB
gjcCAQSgWzBZMDQGCisGAQQBgjcCAR4wJgIDAQAABBAfzDtgWUsITrck0sYpfvNR
AgEAAgEAAgEAAgEAAgEAMCEwCQYFKw4DAhoFAAQU0O2MiFZBx/X1iLwTml3Dg6o3
iOygggI9MIICOTCCAaagAwIBAgIQ0QlVf5hB+oZM3DApkhHZMTAJBgUrDgMCHQUA
MCwxKjAoBgNVBAMTIVBvd2VyU2hlbGwgTG9jYWwgQ2VydGlmaWNhdGUgUm9vdDAe
Fw0wNjA4MTMwMTM0MzFaFw0zOTEyMzEyMzU5NTlaMBoxGDAWBgNVBAMTD1Bvd2Vy

We try to run the modified file:

PS (31) > ./test-script
File C:\Temp\test-script.ps1 cannot be loaded. The contents of f
ile C:\Temp\test-script.ps1 may have been tampered because the h
ash of the file does not match the hash stored in the digital si
gnature. The script will not execute on the system. Please see "
get-help about_signing" for more details..
At line:1 char:13
+ ./test-script <<<<

It fails with an error telling us that the file has been tampered with. This shows how
signing is used to verify the integrity of the script. Now let’s look at the last topic
we’ve going to cover on signing scripts.
SIGNING SCRIPTS 461

13.4.5 Enabling strong private key protection

for your certificate

When we create a private certificate on our computer, it’s possible that malicious pro-
grams might be able to access the certificate and sign scripts on your behalf. This
would then allow the malicious program to create Trojan scripts that appear to be
legitimately signed.

To address this vulnerability, we’ll use the Certificate Manager tool (Cert-
mgr.exe), another utility included in the .NET SDK and the Microsoft Platform SDK.
It’s also included with Internet Explorer 5.0 and later.

The Certificate Manager enables us to export the signing certificate to a .pfx
file. Once we have the PFX available, we can use it to sign a document, but we’ll have
to interactively provide a password as part of the signing process. This interactive
step prevents a malicious program from quietly signing scripts. A user has to provide
the password.

In this section, we’ll go over the steps necessary to export a certificate, and then
we’ll use the exported file to re-sign the file we tampered with in section 13.4.3.

Exporting the certificate

Exporting a certificate using the Certificate Manager is a straightforward task. We’ll
take the certificate we created in the previous sections and export it to a file called
“mycert.pfx”.

Step 1 Start Certmgr.exe and select the certificate to export

First we start the certificate manager (which is a graphical tool). This will
result in a window opening on our desktop that looks something like what is
shown in figure 13.4

Figure 13.4 Launching the Certificate Manager tool
462 CHAPTER 13 SECURITY, SECURITY, SECURITY

The Certificate Manager window will display one or more certificates.
Select the certificate we created in section 13.4.2. This will be the one issued
by the “PowerShell Local Certificate Root”. When you have selected the cer-
tificate, click Export to start the Certificate Export Wizard. Now you should
see something that looks like what is shown in figure 13.5.
Click Next. This will take you to a dialog with two option buttons. Select the
“Yes, export the private key” option and click on Next.

Step 2 Specify the file format and password

The next step in the wizard will ask you to specify the export file format.
Select the “Personal Information Exchange” option. Be sure the “Enable
strong protection” box is checked (this should be the default).
At this point, the system will ask you to enter a password to use to protect
the key you are exporting, as shown in figure 13.6.

Figure 13.5 Launching the Certificate Export Wizard

Figure 13.6

In this figure, we see the

dialog to set the password

used to secure the private

key.
SIGNING SCRIPTS 463

Choose a password you can remember, enter it twice and click Next.

Step 3 Specify the name for the pfx file

Now we enter the name of the file we want to create with a .pfx extensions.
We’ll call it “mycert.pfx”. We click Next, verify the information, and click
Finish. The export is done.

Step 4 Verify that the pfx file was created

Now we’ll verify that the file was created. Enter the following command:

PS (1) > Certmgr.exe
CertMgr Succeeded
PS (2) > dir *.pfx

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Temp

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 8/13/2006 5:38 PM 1768 mycert.pfx

And there it is: “mycert.pfx” as requested.

Using the pfx file to sign a file

Now we can use this file to get a signing certificate by using the Get-PfxCertificate
cmdlet.

PS (3) > $cert = Get-PfxCertificate mycert.pfx
Enter password: ********

PS (4) > $cert

Thumbprint Subject
---------- -------
145F9E3BF835CDA7DC21BD07BDB26B7FCFEA0687 CN=PowerShell User

Let’s use this certificate object to re-sign the file we tampered with earlier:

PS (5) > Set-AuthenticodeSignature test-script.ps1 $cert

 Directory: C:\Temp

SignerCertificate Status Path
----------------- ------ ----
145F9E3BF835CDA7DC21BD07BDB26B7FCFEA0687 Valid test-sc...

Next, make sure that the execution policy is set to AllSigned, and then run the script.

PS (6) > Set-ExecutionPolicy allsigned
PS (7) > ./test-script.ps1
Hello there
Hello there
PS (8) >
464 CHAPTER 13 SECURITY, SECURITY, SECURITY

The script runs properly. There is no prompt because we’ve already told the system
that we trust this signing authority.

This is the end of our discussion of signing as well as the overall discussion on
securing PowerShell installations. In the next (and final) part of this chapter, we’re
going to shift our focus away from securing PowerShell and over to writing secure
PowerShell scripts.

13.5 WRITING SECURE SCRIPTS

As we’ve seen, the PowerShell team has been very careful in designing the various
security features in the PowerShell runtime.

In fact, we (the PowerShell team) have been described as obsessive in our
security focus. Here’s a quote from Microsoft security guru Michael
Howard:

I want folks to realize that the PowerShell guys are very, VERY savvy when
it comes to security. In fact, they are borderline anal. Actually, they’re not
borderline at all.

In the end, however, the whole point of PowerShell is to allow people to create and run
scripts that will automate system administration tasks. As a consequence, vulnerable or
badly written scripts could inadvertently lead to substantial damage to the system. All
the security features in the world can’t defend us from badly written scripts, so we’re
going to look at some of the techniques we can use to make our code more robust.

13.5.1 Using the SecureString class

At some point, we’ll want to write a script that acquires passwords or other sensitive
data such as credit card numbers. PowerShell, through .NET, provides a number of fea-
tures for dealing with sensitive data in a secure way. In this section, we’re going to dis-
cuss how to use those features to write scripts that can deal with sensitive information.

Most of the sensitive data we’ll be dealing with will be in the form of strings.
When a string is created in .NET, the runtime retains that string in memory so it can
efficiently reuse it. Even after we are done with the data, the string will remain in
memory until it is finally cleaned up by the garbage collector. So what’s the big
deal—if an attacker can access the process’s memory, we’re already compromised,
right? That’s true if the information only stays in memory; however, there are a num-
ber of ways that it could end up being persisted to the disk. For one thing, Windows
uses virtual memory. This means that blocks of memory are periodically paged to
disk. Once it’s on the disk, it potentially becomes available to applications that can
do raw accesses to the disk. Now, this may require the attacker to steal your hard disk
and use forensic tools to analyze it but it is possible and has happened before. Simi-
larly, using hibernate on a laptop will write an image of memory to the disk. Finally,
the string could wind up on the disk due to a crash dump, where an image of the
computer’s memory is dumped to the disk during a system crash.

AUTHOR’S
NOTE
WRITING SECURE SCRIPTS 465

So how can we avoid these problems? When writing .NET programs, the way to
safely work with strings containing sensitive data is to use the System.Secu-
rity.SecureString class. This type is a container for text data that the .NET
runtime stores in memory in an encrypted form. The most common way to get
secure strings is using the Get-Credential cmdlet or the [System.Manage-
ment.Automation.PSCredential] type. This type also forms the basis for writ-
ing secure scripts in PowerShell using the SecureString cmdlets, which we’ll look
at next.

Creating a SecureString object

When we write a script or function that requires sensitive data such as passwords, the
best practice is to designate that password parameter as a SecureString in order to
help keep passwords confidential. Let’s look at a how we can create a secure string.
The simplest way to do this is to use the -AsSecureString parameter on the
Read-Host cmdlet.

PS (1) > read-host -AsSecureString -prompt "Password"
Password: ********
System.Security.SecureString

Let’s take a look at the members on the SecureString object using the Get-Mem-
ber cmdlet.

PS (2) > $ss = read-host -AsSecureString -prompt "Password"
Password: ********
PS (3) > $ss | gm

 TypeName: System.Security.SecureString

Name MemberType Definition
---- ---------- ----------
AppendChar Method System.Void AppendChar(Char c)
Clear Method System.Void Clear()
Copy Method System.Security.SecureString Copy()
Dispose Method System.Void Dispose()
Equals Method System.Boolean Equals(Object obj)
get_Length Method System.Int32 get_Length()
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
InsertAt Method System.Void InsertAt(Int32 index, Cha...
IsReadOnly Method System.Boolean IsReadOnly()
MakeReadOnly Method System.Void MakeReadOnly()
RemoveAt Method System.Void RemoveAt(Int32 index)
SetAt Method System.Void SetAt(Int32 index, Char c)
ToString Method System.String ToString()
Length Property System.Int32 Length {get;}

The only way we can convert a string to a secure string is by appending one character
at a time. Let’s append another character to the string.
466 CHAPTER 13 SECURITY, SECURITY, SECURITY

PS (4) > $ss.AppendChar("1")

Here’s a way to make a secure string out of a normal one. First, we create an instance
of the secure string class:

PS (9) > $ss = new-object System.Security.SecureString

Then we send each character to the Foreach cmdlet and append it to that secure
string. Normally strings in PowerShell don’t stream by default, but if you explicitly
get an enumerator, it is possible to stream a string one character at a time.

PS (10) > "Hello there".GetEnumerator() | % {$ss.AppendChar($_)}

Now let’s look at the results.

PS (11) > $ss
System.Security.SecureString

Not very interesting, is it? But that’s the point. It’s secure—there’s no easy way to get
the data back. We’ll take one final precaution. We don’t want our secure string tam-
pered with, so we’ll make it read-only.

PS (12) > $ss.MakeReadOnly()
PS (13) > $ss.IsReadOnly()
True

Now if we try to modify it, we’ll get an error.

PS (14) > $ss.AppendChar('!')
Exception calling "AppendChar" with "1" argument(s): "Instance i
s read-only."
At line:1 char:15
+ $ss.AppendChar(<<<< '!')

Marking a secure string read-only once it’s complete is generally considered to be a
best practice.

The SecureString cmdlets

Manually building secure strings is obviously a bit tedious, so PowerShell has two
cmdlets for working with secure strings: ConvertTo-SecureString and Con-
vertFrom-SecureString. These cmdlets allow you to write data to disk in a rea-
sonably secure fashion.

By default, the SecureString cmdlets uses the Windows Data Protection API
(DPAPI) when they convert your SecureString to and from a plain text represen-
tation. The Data Protection API is the standard way on the Microsoft Windows plat-
form for programs to protect sensitive data. The encryption key that the DPAPI uses
is based on Windows logon credentials. This means that we don’t have to specify a
key to encrypt or decrypt data—the system will generate one for us automatically
based on the logon credentials. Of course, this means that we can only decrypt our
own data using this mechanism. If there is a need to export or share encrypted data
WRITING SECURE SCRIPTS 467

across multiple machines or with additional users then we have to create and manage
a key for these purposes.

However, there are many instances when you may want to automatically provide
the SecureString input to a cmdlet, rather than have the host prompt you for it.
In these situations, the ideal solution is to import a previously exported Secure-
String from disk (using ConvertTo-SecureString). This retains the confiden-
tiality of your data and still allows you to automate the input.

If the data is highly dynamic (for example, coming from a CSV file) then the best
approach is to do something like:

$secureString = ConvertTo-SecureString "Kinda Secret" `
 -AsPlainText –Force

The cmdlet requires the -Force parameter to ensure we acknowledge the fact that Pow-
erShell cannot protect plain text data, even after you’ve put it in a SecureString.

13.5.2 Working with credentials

To do any sort of administrative work on a computer, at some point we’re going to
need to get the credentials of the user account authorized to do the work. Obviously,
it is bad practice to put passwords in scripts, so you should always prompt for pass-
words or credentials. In PowerShell, this is done through the Get-Credential
cmdlet as shown in figure 13.7.

Running the Get-Credential cmdlet will return a credential object that you
can then use for operations that require a password. Of course, to do this, you need to
store the credential object in a variable as shown:

Figure 13.7

When you use the Get-
Credential cmdlet, it

will pop up a dialog that

looks like this.
468 CHAPTER 13 SECURITY, SECURITY, SECURITY

PS (2) > $cred = get-credential

cmdlet get-credential at command pipeline position 1
Supply values for the following parameters:
Credential

Now let’s display this credential object:

PS (3) > $cred

UserName Password
-------- --------
mymachine\myuserid System.Security.SecureString

The domain and user name are stored as a regular string, but the password has been
stored as an instance of the type System.Security.SecureString. As discussed
previously, this allows the credential object to remain in memory without presenting
a significant security risk.

Now let’s look at an example where we want to use the credential object. Let’s
write a script that will start a process using different credentials. This works approxi-
mately like the runas.exe command. We’re going to use this function to launch
the Local User Administration dialog. When we run the script, we’ll see something
that looks like what is shown in figure 13.8.

In this example, we’re entering the user name and password for a user that hasn’t
logged in yet, so we’ll get an error:

Figure 13.8

Because it uses the Get-
Credential cmdlet, when you

run Start-LocalUserManager,

you will see the credential dialog

shown here pop up on your screen.
WRITING SECURE SCRIPTS 469

PS (1) > Start-LocalUserManager

cmdlet get-credential at command pipeline position 1
Supply values for the following parameters:
Credential
Exception calling "Start" with "1" argument(s): "The user's pass
word must be changed before logging on the first time"
At line:12 char:36

+ [System.Diagnostics.Process]::Start(<<<< $StartInfo)
PS (2) >

Now we’ll try it again, but this time with a valid user account. The results are shown
in figure 13.9. The source for this function is shown in listing 13.1.

function Start-LocalUserManager
{
 $cred = get-credential
 $StartInfo = new-object Diagnostics.ProcessStartInfo
 $StartInfo.UserName = $cred.Username
 $StartInfo.Password = $cred.Password
 $StartInfo.FileName = "$env:windir\system32\mmc.exe"
 $StartInfo.Arguments = "$env:windir\system32\lusrmgr.msc"
 $StartInfo.WorkingDirectory = "$env:windir\system32"
 $StartInfo.LoadUserProfile = $true
 $StartInfo.UseShellExecute = $false
 [System.Diagnostics.Process]::Start($StartInfo)
}

Figure 13.9 When you start the Local User Manger snap-in in MMC,

you’ll see something that looks like this.

Listing 13.1 The Start-LocalUserManager Function

Get credential
object

B

C Set the
credentials

Start the
processD
470 CHAPTER 13 SECURITY, SECURITY, SECURITY

Since the function will prompt for credentials, we don’t need to give it any argu-
ments. The first thing we do in function is to call Get-Credential to get the
credential information that we want the process to run with. Then we create a Pro-
cessStartInfo object that we will use to set the various properties we want the
process to have when it starts. The most important of these in this example are the
UserName and Password properties. The Process object will safely decrypt the
Password SecureString using the DPAPI when creating the process. Next we set
the program we want to run—the Microsoft Management Console (mmc.exe)—and
give it the path to the MMC console file that will load the local user admin MMC
snap-in. We’re running as a particular user, so we want the user profile to be run and
we don’t want to use ShellExecute to launch the process because then we wouldn’t
be able to pass the credentials to the underlying CreateProcess() call. Once we’ve
finished setting all of the properties on the ProcessStartInfo object, we call the
static Start() method on [System.Diagnostics.Process] to start the
process running.

13.5.3 Avoiding Invoke-Expression

At the beginning of this chapter, we talked about the risks around using the
Invoke-Expression cmdlet and code injection attacks in general. If we can avoid
using this cmdlet, it’s a good idea for two reasons: first, not using it makes our code
less vulnerable, and second, Invoke-Expression has performance consequences
because it requires that the expression be recompiled every time it gets called. In
most circumstances, it’s possible to rewrite our code using scriptblocks instead of
Invoke Expression.

In this section, we’ll work through a real example were we take a piece of script
code using Invoke-Expression and rewrite it to use scriptblocks.

The original wheres script

The idea behind this script was to come up with a version of the Where-Object
cmdlet that had a simpler syntax. The function was created by one of the developers
on the PowerShell team. Instead of typing a command line that looked like:

PS (3) > dir | where {$_.extension -eq ".ps1"}

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Temp

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 8/13/2006 5:44 PM 3250 test-script.ps1

He wanted to simply type:

PS (1) > dir | wheres extension eq .ps1

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Temp

B

C

D

WRITING SECURE SCRIPTS 471

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 8/13/2006 5:44 PM 3250 test-script.ps1

There’s certainly a lot less punctuation in the second command line, so it seems a
worthy goal. The original version of the command is show in listing 13.2.

function wheres($property, $operator, $matchText)
{
 begin {

$expression = "`$_.$property -$operator `"$matchText`""
 }
 process {
 if(invoke-expression $expression)
 {
 $_
 }
 }
}

This function takes three parameters —the property on the inbound pipeline object
to check, the operation to perform, and the value to check against. In the begin clause
of the function, we precalculate as much of the expression as possible, expanding the
property name and the operator into $expression . This gets rid of the string
expansion step that would otherwise be performed for each pipeline object. Finally, in
the process clause of the function, Invoke-Expression is used to evaluate the
expression for the current pipeline object and emit the object if it matches.

This is a straightforward implementation of the function, but there is one worri-
some aspect. Executing a command such as the following is fine

dir | wheres mode match d

but something like

dir | wheres extension eq '.ps1"; write-host hi; "'

will both interfere with the results we expect and execute the extra code “write-host
hi”. If the extra code were something like “del –force –rec c:\” then it would be more
than merely annoying.

Of course, the author of this script would never do anything like this. But some-
one else who is just using the script might think it’s actually safe to pass untrusted
arguments to it. After all, looking at it from the outside, there are no obvious code
injection vulnerabilities. It appears to accept a simple operator, nothing more. This is
why we need to be cautious with this kind of script—because of the cascading conse-
quences problem we discussed at the beginning of the chapter. This script appears on
a blog, gets copied into someone else’s application, which gets copied into a third

Listing 13.2 The original wheres function

The function
definitionB

C
Set up the
expression

Evaluate the
expressionD

B

C

D

472 CHAPTER 13 SECURITY, SECURITY, SECURITY

individual’s web application, and now this script that was never intended to be used
with untrusted input is being used for exactly that in a network-facing application.
Not a good situation. Let’s see what we can do to make it more robust and also run
faster at the same time.

A safer, faster wheres script

The problem with the old script was that it used Invoke-Expression to evaluate
an expression at runtime. We want to use scriptblocks to be a bit more static in our
approach. The solution is shown in listing 13.3.

function wheres
{
 begin {
 if ($args.count -ne 3)
 {
 throw "wheres: syntax <prop> <op> <val>"
 }
 $prop,$op,$y= $args
 $op_fn = $(
 switch ($op)
 {
 eq {{$x.$prop -eq $y}; break}
 ne {{$x.$prop -ne $y}; break}
 gt {{$x.$prop -gt $y}; break}
 ge {{$x.$prop -ge $y}; break}
 lt {{$x.$prop -lt $y}; break}
 le {{$x.$prop -le $y}; break}
 like {{$x.$prop -like $y}; break}
 notlike {{$x.$prop -notlike $y}; break}

 match {{$x.$prop -match $y}; break}
 notmatch {{$x.$prop -notmatch $y}; break}
 default {
 throw "wh: operator '$op' is not defined"
 }
 }
)
 }
 process { $x=$_; if(. $op_fn) { $x }}
}

In this version of the function, we begin by validating the number of arguments and
reporting an error if there isn’t the correct number. We want to place a scriptblock in
the variable $op_fn , which we will use to implement the processing for that oper-
ator. We use a switch statement to select the right scriptblock to return. There is

Listing 13.3 The safe wheres function

Validate
arguments

B

Bind the operator
function

C Switch on the
operator string

D

Function
implementing EQE

Error on unknown
operator

F

Invoke operator
function

G

B

C
D

WRITING SECURE SCRIPTS 473

one scriptblock for each operator; for example, the eq operator is shown in . If the
operator isn’t one of the ones we’re chosen to implement, we’ll throw an error .

Once we’ve selected the scriptblock, we’ll invoke it once for each inbound
pipeline object. Notice that we don’t pass any arguments to the scriptblock. Dynamic
scoping allows the scriptblock to pick up the arguments from the enclosing scope.

This second implementation is clearly more complex; however, it does more error
checking, is more robust in general, and has no code injection vulnerabilities. It is
also significantly faster than the Invoke-Expression version. (It also makes a
good illustration of the use of scriptblocks.)

There are many more examples where we can replace Invoke-Expression with
scriptblocks, but in the end, the approach is basically the same—decide whether we
really need to generate code at runtime or whether we can just select from a set of
precompiled alternatives. If the set of alternatives is large, you may want to use a
hashtable instead of a switch statement, but the principle remains the same.

This brings us to the end of our discussion of security and PowerShell. Securing
systems and writing secure code can be a subtle, twisty, and arcane topic. It can also
be alternately completely fascinating or as dull as toast.

13.6 SUMMARY

Let’s review what we covered in this chapter. We began with a rant (sorry—discus-
sion) on security and threat modeling. We covered:

• What security is: mechanisms for operating a computer without the risk of dan-
ger or loss.

• That security is not equivalent to cryptography and its related technologies
(although these tools are used to build a secure system).

• Basic threat modeling and the STRIDE approach.

• Definitions for the elements of a threat model: vulnerability, threat, asset, and
mitigation.

In the next section, we covered securing the PowerShell installation itself. This
included discussions of how PowerShell is secure by default. As installed, PS limits its
attack surface by:

• Having no default file association; this prevents use of attachment invocation or
point-and-click social engineering attacks.

• Exposing no remote access method, forcing a hopeful attacker to depend on
other tools.

• Having a default execution policy of Restricted, which prevents any scripts from
running.

• Not including the current directory in the command search path, preventing
working directory exploits.

E
F

G

474 CHAPTER 13 SECURITY, SECURITY, SECURITY

• Additional issues around managing the execution path.

• Execution policy—what it is and how you can examine the current EP using
Get-ExecutionPolicy. To allow signed scripts to run, use Set-Execu-
tionPolicy AllSigned, and to allow any local scripts to run—the loosest
reasonable policy—use Set-ExecutionPolicy RemoteSigned.

• Script signing: how it works and how to set up certificates, keys, and so on.

The final part of the chapter covered technologies and techniques we can use for
making our scripts more robust. The topics we covered included:

• That we should always store sensitive information in memory using the .NET
SecureString class and that we can read data as a secure string from the key-
board using the Read-Host cmdlet.

• Working with credentials and using the Get-Credential cmdlet.

• Approaches for avoiding the use of Invoke-Expression in scripts.

Computer security is a complex, evolving field. It is obviously important to keep
abreast of the latest tools and techniques, as well as monitor the current crop of
threats and exploits. However, while thinking though a problem can be facilitated by
tools and models, it cannot be replaced by them. In the end, there is no replacement
for common sense.
SUMMARY 475

Comparing PowerShell
to other languages

A P P E N D I X A
Most people will come to PowerShell with experience using other languages or shells,
so in this appendix we’ll compare PowerShell to a number of common shells and lan-
guages people may know. We’ll spend most of our time on cmd.exe (the traditional
Windows shell) and the UNIX shells. We’ll also look at a variety of issues that Perl,
VBScript, and C# programmers may encounter. Along the way, we’ll introduce a num-
ber of handy techniques that will be of interest to the general PowerShell user.

These sections are not strictly feature-by-feature comparisons. Rather, they
are sets of hints and tips that I have gathered over the years based on ques-
tions that people have asked. They represent the most common stumbling
blocks and questions that new users seem to have. Of course, it’s impossible
to capture every problem in an appendix. The community, through blogs
and newsgroups, is a tremendous resource for assisting new users in becom-
ing successful with PowerShell.

A.1 POWERSHELL AND CMD.EXE

The most commonly used shell on Windows today is cmd.exe. Let’s look at some of
the things a cmd.exe user might need to know in order to use PowerShell successfully.

AUTHOR’S
NOTE
476

A.1.1 Basic navigation and file operations

PowerShell provides a set of default aliases so the basic command names that a cmd.exe
user knows are also available in PowerShell. We can do basic operations such as dir,
copy, and sort, and they will do more or less what we expect. It becomes more com-
plex when we start to specify options to these commands, because PowerShell uses a
different option syntax. Commands are also factored quite differently in PowerShell.
By factored, we mean how the functionality is distributed across the various com-
mands. Cmd.exe has a small number of commands with a lot of functionality in each
command. Unfortunately, these commands are hard to compose together. PowerShell
has a somewhat larger set of commands with fewer options that are designed to be com-
posed. For example, the PowerShell equivalent of dir doesn’t have a sort option; you
use the sort command instead. In the following set of tables, we’ll present some of
the most common command patterns that cmd.exe users encounter. Table A.1 shows
the basic navigation commands in cmd.exe and their equivalent in PowerShell. We
mentioned earlier that the commands in PowerShell are aliases. In the table, there are
sometimes second examples in italics. These second examples are the unaliased versions
of the commands. For example, “dir” is an alias for “Get-ChildItem”.

Copying, moving, and deleting files are also common operations. Table A.2 covers a
set of common scenarios comparing the cmd.exe commands against their PowerShell
equivalents.

Table A.1 Basic navigation operations in cmd.exe and PowerShell

Operation description cmd.exe syntax PowerShell

Get a listing of the current directory dir dir
Get-ChildItem

Get a listing of all of the files matching a
particular pattern

dir *.txt dir *.text
Get-ChildItem *.txt

Get a listing of all of the files in all of the
subdirectories of the current directory.

dir /s dir –rec
Get-ChildItem –rec

List all text files in all subdirectories dir /s *.txt dir –rec –filter *.txt
Get-ChildItem –rec –filter *.txt

Sort files in order by last write time dir /o:-d dir | sort –desc LastWriteTime

Set the current working directory to a
particular location

cd c:\windows cd c:\windows
Set-Location c:\windows
 APPENDIX A: CO M P A R I N G POWERSH E L L 477

Another common way to do file operations is using the redirection operators. Of
course, PowerShell supports the pipe operator (|). It also supports the same set of redi-
rection operators (>, >>, 2>, 2>&1) that are in cmd.exe, but it does not support input
redirection. Instead, we have to use the Get-Content command (or its alias type).

In the next section, we’ll look at some of the syntactic features of each environ-
ment that are used for scripting.

A.1.2 Variables and substitution

In cmd.exe, environment variables are enclosed in percent (%) signs and are set using
the set command, as shown in the following example.

C:\>set a=3

C:\>echo a is %a%
a is 3

In PowerShell, variables are indicated with a dollar sign ($) in front of the variable. No
special command is required to set a variable’s value—simple assignment is enough.
Here’s the previous example using PowerShell syntax.

PS (1) > $a = 3
PS (2) > echo a is $a
a is 3

There is another thing that should be noted about variables. PowerShell supports dif-
ferent kinds of variables; for the most part, cmd.exe variables are environment vari-
ables. This means that these variables are automatically exported to child processes
when cmd.exe creates a process. On the other hand, in PowerShell, environment vari-
ables are stored in a separate namespace ENV:. To set an environment variable in
PowerShell, we do

$env:envVariable = "Hello"

Table A.2 Basic file operations in cmd.exe and PowerShell

Operation description cmd.exe syntax PowerShell

Copy a file to the screen type file.txt type file.txt
Get-Content file.txt

Copy a file copy f1.txt f1.txt copy f1.txt f2.txt
Copy-Item f1.txt f2.txt

Copy several files copy f1.txt,f2.txt,f3.txt c:\ copy f1.txt,f2.txt,f3.txt c:\

Concatenate several files copy f1.txt+f2.txt+f3.txt f4.txt type f1,txt,t2,txt,f3.txt > f4.txt

Delete a file del file.txt del file.txt
Remove-Item file.txt

Delete all text files in the current
directory

del *.txt del *.txt
Remove-Item *.txt

Delete all text files in all subdirec-
tories of the current directory.

del /s *.txt del –rec *.txt
Remove-Item –rec *.txt
478 APPENDIX A: CO M P A R I N G POWERSH E L L

The next thing to discuss is how to perform calculations. The set command in
cmd.exe is used to do arithmetic calculations. Here’s what a calculation looks like
cmd.exe:

C:\>set /a sum=33/9
3
C:\>echo sum is %sum%
sum is 3

Again, PowerShell requires no special syntax. To do a calculation, you simply write
the expressions as shown in the next few examples.

PS (1) > $a = 2 + 4
PS (2) > $a
6
PS (3) > $b = $a /3 –[math]::sqrt(9)
PS (4) > $b
-1
PS (5) > [math]::sin([math]::pi * 33)
4.88487288813344E-16
PS (6) >

Because PowerShell is build on top of .NET, it has the full mathematical capabilities
that languages such as C# and VB have, including floating point and access to tran-
scendental functions.

Finally, in cmd.exe, there are a variety of string operations that can be done as a
side effect of expanding a variable. In PowerShell, these types of operations are done
with expressions and operators. For example, if you want a variable containing a file
name “myscript.txt” and you want to change it to be “myscript.ps1”, you would do
it with the -replace operator:

PS (1) > $file = "myscript.txt"
PS (2) > $file -replace '.txt$','.ps1'
myscript.ps1

This just displayed the changed string. Now let’s update the variable itself.

PS (3) > $file = $file -replace '.txt$','.ps1'

And now we’ll verify that it has been changed.

PS (4) > $file
myscript.ps1

Using operators to update variable values is not as concise as the variable expansion
notation that cmd.exe uses, but it is consistent with the rest of PowerShell instead of
being a special-case feature that only applies to variable expansion.
 APPENDIX A: CO M P A R I N G POWERSH E L L 479

A.1.3 Running commands

Now let’s look at differences in how commands are run in the two environments. In
PowerShell, we don’t have to use a command to echo something to the screen. A string
on the command line is directly output.

PS (3) > "a is $a"
a is 3

On the other hand, we also need to be able to run commands where the names have
spaces in them. This is done with the PowerShell call operator “&”. To run a com-
mand with a space in the name, we do:

& "command with space in name.exe"

Another difference between the environments is how scripts are run. Normally with
cmd.exe, when you run a script, any changes that that script makes affect your current
shell session. This has led to a common practice where bat files are used to set up the
environment. The “vcvars.bat” file that is part of Visual Studio is a good example of
this. When we run the file, it updates the path and sets all of the variables that are nec-
essary for use to use the Visual Studio command-line tools. (In section A.1.7, we’ll
talk about how to use this type of batch file.)

This is not the default behavior in PowerShell. By default, when a script is run, it
runs in its own scope so that any nonglobal variables that are created are cleaned up
when the script exits. To use a PowerShell script to modify our environment, we need
to “dot” it. In other words, we put a dot and a space in front of the script to run. This
is described in detail in chapter 7.

In cmd.exe, when we want to create a local scope for variables, we use the set-
local/endlocal keywords. PowerShell has the equivalent ability, again using the
ampersand notation. Here’s what it looks like:

PS (1) > $a = 3
PS (2) > $a
3
PS (3) > & { $a = 22; $a }
22
PS (4) > $a
3

In this example, in the outer scope, we set the value of $a to 3 and then display it.
Then we use the & operator and braces to create an nested scope. In this nested scope,
we define a new value for $a 22 then display this new value. Once we exit the local
scope, we again display the value of $a, which is the original value of 3.

A.1.4 Differences in syntax

The PowerShell syntax is obviously quite different from cmd.exe, but beyond basic
syntax, there are some significant differences in the way commands are processed.
One thing that a lot of people coming from cmd.exe find annoying is that in cmd.exe,
480 APPENDIX A: CO M P A R I N G POWERSH E L L

you don’t have to put spaces between built-in commands and their arguments. This
means that you can issue commands like the following:

C:\>cd\windows

C:\WINDOWS>cd..

C:\>dir\files\a.txt
 Volume in drive C is C_Drive
 Volume Serial Number is F070-3264

 Directory of C:\files

04/25/2006 10:55 PM 98 a.txt
 1 File(s) 98 bytes
 0 Dir(s) 94,158,913,536 bytes free

and they work just fine. However, in PowerShell they will result in errors:

PS (1) > cd\windows
The term 'cd\windows' is not recognized as a cmdlet, functi
on, operable program, or script file. Verify the term and t
ry again.
At line:1 char:10
+ cd\windows <<<<
PS (2) > cd..
The term 'cd..' is not recognized as a cmdlet, function, op
erable program, or script file. Verify the term and try aga
in.
At line:1 char:4
+ cd.. <<<<

Commands can be used this way in cmd.exe because it treats its built-in commands as
special cases and doesn’t require spaces to separate the commands from the arguments.
PowerShell doesn’t have any special built-in commands—all commands are treated
the same. This allows for greater consistency in PowerShell and, down the road,
greater extensibility. But that doesn’t help all of the people who have cd.. or cd\
burned into their “finger-memory”. For people who find it to be a real problem, it’s
possible to define functions to work around the difficulty. Let’s define a couple of
these functions as an example:

PS (1) > function cd.. { cd .. }
PS (2) > function cd\ { cd \ }

Now we’ll try them out. First we cd into the root of the filesystem, then into the file-
system, and finally back to the root.

PS (3) > cd\
PS (4) > cd windows
PS (5) > cd..
 APPENDIX A: CO M P A R I N G POWERSH E L L 481

This works around some of the problems, but it doesn’t fix everything. We still had to
put a space between “cd” and “windows”. Even so, many people do find this approach
useful. If we want to make these functions available every time we start PowerShell, we
can put them in our personal profile, which is named by the variable $PROFILE. Run

notepad $profile

Add the definitions you want to have available and then save the file. The next time
you start PowerShell, the functions you’ve defined in the profile will be available.

A.1.5 Searching text: findstr and Select-String

A common command for searching through files from cmd.exe is findstr.exe.
(Note that since it’s an external command, it will also work just fine from PowerShell.)
PowerShell has a similar command, Select-String. So why have a new cmdlet
when the old executable already works? There are a couple reasons. First, the
Select-String cmdlet returns objects that include the matching text, the number
of the line that matched, and the name of the file as separate fields, making it easier to
process the output. Secondly, it uses the .NET regular expression library, which is
much more powerful than the patterns findstr can handle.

If we look at the help for findstr, we’ll see that it actually has a lot of operations
that aren’t built into Select-String. This is because PowerShell uses a composi-
tion model. Instead of building a large but fixed set of operations into one command,
there are more small composable commands. For example, to search all of the C# files
in all of the subdirectories with findstr, the command is

findstr /s Main *.cs

With Select-String, we’d pipe the output of dir into the command

dir –rec –filter *.cs | select-string main

A.1.6 For loop equivalents

Iteration (that is, operating over collections of things) is done in cmd.exe with the
for statement. This is a powerful flow control statement, but it’s also rather complex.
Again, PowerShell has several simpler mechanisms for doing the same thing using
pipelines. Table A.3 shows a number of simple examples comparing a cmd.exe for
statement with the equivalent PowerShell construct.

Table A.3 Examples of iteration in cmd.exe and PowerShell

Description cmd.exe PowerShell

Iterate over files for %f in (*) do echo %f dir | ? {! $_.PSIsContainer} | % {$_ }

Iterate over directories for /d %f in (*) do echo %f dir | ? { $_.PSIsContainer} | % {$_ }

Iterate over the numbers
from 1 to 9 by twos

for /l %i in (1,2,10) do (@echo %i) for ($i=1; $i -lt 10; $i+=2) { $i }
482 APPENDIX A: CO M P A R I N G POWERSH E L L

Now let’s look at a somewhat more complex example. As well as iterating over files,
the cmd.exe for statement can be used to parse files. Listing A.1 shows a for com-
mand that will extract and print the first three tokens from a data file.

for /f "tokens=1-3" %a in (c:\temp\data.txt) do (
@echo a is %a b is %b c is %c)

The corresponding command in PowerShell is shown in listing A.2.

type c:\temp\data.txt |%{ $a,$b,$c,$d = [regex]::split($_,' +');
"a is $a b is $b c is $c" }

The for statement is monolithic—there’s no way to use the tokenizing capability of
the for statement separate from the for statement. In PowerShell, all of the opera-
tions (reading the file, tokenizing, and so on) are done with separate components.
The [regex]::Split() method can be used anywhere because it’s not part of any
particular statement.

A.1.7 Batch files and subroutines

In cmd.exe, subroutines are invoked with the goto statement and also use a goto to
return to the calling location. A cmd.exe procedure is invoked using the call state-
ment. PowerShell, on the other hand, has first-class functions including named
parameters, optionally typed parameters, and recursion. PowerShell scripts are also
callable as commands, and again recursion and named parameters are permitted.
PowerShell does not have a goto statement, but labels can be used with the Power-
Shell loop statements.

Also note that there are no differences in behavior between code typed on the
command line and code executed out of a function or script in PowerShell. The syn-
tax and semantics are the same everywhere.

One of the most common uses for cmd.exe batch files is to set up environment
variables. As mentioned previously, if Visual Studio is installed, there will be a batch
file called “vcvarsall.bat” installed along with the product that is used to set up the
environment variables in cmd.exe to do development work. It’s also possible to use
these batch files from PowerShell by executing them, dumping the changes that have
been made to the environment, then importing those changes back into the Power-
Shell environment. This sounds complicated, but turns out to be quite simple. First
we’ll define the batch command we want to run in a variable called $cmd.

PS (1) > $cmd =
>> '"C:\Program Files\Microsoft Visual Studio 8\VC\vcvarsall.bat"' +

Listing A.1 Tokenization using cmd.exe for statement

Listing A.2 Tokenization using PowerShell
 APPENDIX A: CO M P A R I N G POWERSH E L L 483

>> ' & set'
>>

Next, we’ll invoke the command, piping the output into the % command.

PS (2) > cmd /c $cmd |%{
>> $p,$v = $_.split('='); set-item -path env:$p -value $v }
>>

In the body of the block, the incoming command is split into name ($n) and value
($v) pieces. These pieces are then passed to Set-Item to set the values of corre-
sponding environment variables. Now let’s check the result of what we’ve done.

PS (3) > ls env:v*

Name Value
---- -----
VS80COMNTOOLS C:\Program Files\Microsoft Visual...
VSINSTALLDIR C:\Program Files\Microsoft Visual...
VCINSTALLDIR C:\Program Files\Microsoft Visual...

We can see that the variables have been set properly. Let’s generalize this into a func-
tion that can work with any batch file. Listing A.3 shows the source for this Get-
BatchFile function.

function Get-BatchFile ($file)
{
 $cmd = "`"$file`" & set"
 cmd /c $cmd | Foreach-Object {
 $p,$v = $_.split('=')
 Set-Item -path env:$p -value $v
 }
}

This function does the same thing as the commands we typed in. The only difference
is that we’re using the full cmdlet names instead of the % alias for Foreach-Object,
and the batch file to run is passed in as an argument. (By the way, it’s a recommended
practice to use the full command names in scripts rather than the aliases. The person
who’s reading our scripts in the future will appreciate our efforts.)

A.1.8 Setting the prompt

One of the most common questions people moving to PowerShell ask is how can I
customize my prompt? In cmd.exe, this is done by setting the PROMPT variable. The
typical setting for PROMPT is

C:\files>set prompt
PROMPT=PG

Listing A.3 Get-BatchFile example
484 APPENDIX A: CO M P A R I N G POWERSH E L L

In PowerShell, the prompt is controlled by the prompt function. This is a function
that should return a single string. The equivalent of “PG” is

PS (31) > function prompt {"$PWD> "}
C:\files>

The nice thing about prompt being a function in PowerShell is that it can do any-
thing. For example, if you wanted to display the day of the week as your prompt, we
could do:

C:\files> function prompt { "$((get-date).DayOfWeek)> " }
Monday>

We redefine the function and now we see what day it is. Here’s something else we can
do: the problem with displaying the path in the prompt is that it can get quite long.
As a consequence, many people prefer to show it in the window title. This can be
done using a function like what is shown in listing A.4:

function prompt {
 $host.ui.rawui.WindowTitle = "PS $pwd"
 "PS > "
}

The result of this prompt definition is shown in figure A.1. The string “PS > ” is still
displayed as the actual prompt, but the function also sets the window title. These
examples produce results as shown in figure A.1.

Because the prompt is a function, it can do pretty much anything log commands, play
sounds, print quotes, and so on.

A.1.9 Using doskey in PowerShell

The doskey tool lets us define keyboard macros in a console window. What do we mean
by this? Doskey macros are processed by the console subsystem—the part of the Win-
dows operating system that handles rendering the console window and reading from
the keyboard. When a console program does a Readline() call, the console sub-
system checks to see whether any macros are available for that program. If there are, it
does the macro substitution on the string before they are returned to the user. So why

Listing A.4 Prompt function example

Figure A.1

Setting in the prompt

in PowerShell
 APPENDIX A: CO M P A R I N G POWERSH E L L 485

do we care? Because it means that we can also use doskey macros in PowerShell. Here’s
an example that shows how to use the doskey utility from PowerShell. First we’ll take
a look to see whether there are any macros defined for PowerShell initially.

PS (2) > doskey /macros:powershell.exe

Nothing is returned so, obviously, there are currently no doskey macros for Power-
Shell. Notice that we have to specify the full name of the executable file. The default
is cmd.exe, so to make our doskey commands apply to PowerShell we always have to
specify the name “powershell.exe”. Now let’s define a macro:

PS (3) > doskey /exename=powershell.exe `
>> ddir = dir `$* `| ? `{ '$_.PSIsContainer' `}
>>

This requires a fair bit of quoting to make sure that the arguments get passed through
to doskey properly. If you want to define a number of macros, it’s probably easiest to
define them using the doskey /file option. Now let’s make sure that the macro was
defined properly. Remember, the text will be substituted on the command line, so the
resulting command line has to be syntactically correct.

PS (4) > doskey /macros:powershell.exe
ddir=dir $* | ? { $_.PSIsContainer }

It looks fine. Notice the use of $* in the macros. When doskey macro substitution is
done, $* will be replaced by any arguments to the macro. Now let’s try it.

PS (5) > ddir

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\files

Mode LastWriteTime Length Name
---- ------------- ------ ----

d---- 8/19/2006 2:35 PM d1
d---- 8/19/2006 2:36 PM d2
d---- 8/19/2006 2:35 PM d3

It displays only the directories in the current directory. Let’s give it the option -rec
and see what happens.

PS (6) > ddir -rec

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\files

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 8/19/2006 2:35 PM d1
d---- 8/19/2006 2:36 PM d2
d---- 8/19/2006 2:35 PM d3
486 APPENDIX A: CO M P A R I N G POWERSH E L L

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\files\d2

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 8/19/2006 2:36 PM dd1
d---- 8/19/2006 2:36 PM dd2

This time, we get all of the directories including subdirectories. doskey also lets you
look at the console command history. Let’s try it. Again we have to specify the full exe-
cutable name.

PS (7) > doskey /exename=powershell.exe /h
cd c:\files
doskey /macros:powershell.exe
doskey /exename=powershell.exe `
 ddir = dir `$* `| ? `{ '$_.PSIsContainer' `}
doskey /macros:powershell.exe
ddir
ddir -rec
doskey /exename=powershell.exe /h

This shows us all of the commands we’ve typed. But PowerShell also maintains a his-
tory of all of the commands that it executed. Since these commands are recorded after
the doskey substitutions, it should have the expanded commands instead of what
you actually typed.

PS (8) > get-history

 Id CommandLine
 -- -----------
 1 cd c:\files
 2 doskey /macros:powershell.exe
 3 doskey /exename=powershell.exe `...
 4 doskey /macros:powershell.exe
 5 dir | ? { $_.PSIsContainer }
 6 dir -rec | ? { $_.PSIsContainer }
 7 doskey /exename=powershell.exe /h

Notice the commands with IDs 5 and 6. These are the expanded commands that cor-
respond to the typed commands “ddir” and “ddir –rec”. This is a way you can see
what the macro expansion actually did.

doskey is another tool that you can use to help ease your transition from cmd.exe
to PowerShell. It let’s you define parameterized macros that can expand simple strings
into more complex PowerShell expressions.

A.1.10 Using cmd.exe from PowerShell.

The final topic is how we can use cmd.exe from PowerShell. In particular, how can we
use our existing scripts? The answer is that, for the most part, you can just use them.
If PowerShell sees a file with a .cmd file extension, it will simply run it. The part that
doesn’t work comes in with all of the configuration scripts that people use. These are
 APPENDIX A: CO M P A R I N G POWERSH E L L 487

scripts that set a number of variables and then exit. They won’t work when run from
PowerShell because the cmd.exe process that’s created to run them will exit when the
batch file has completed, discarding any changes.

We can also run any of the cmd built-ins from PowerShell using “cmd /c”. Here’s
an example of using cmd.exe for command from PowerShell:

PS (1) > cmd /c 'for %f in (*) do @echo %f'
a.txt
b.txt
c.txt
d.txt

Now let’s use the cmd.exe for command to generate a set of files that we’ll then pro-
cess using the PowerShell foreach statement. Here’s what this looks like:

PS (2) > foreach ($f in cmd /c 'for %f in (*) do @echo %f')
>> { $f.ToUpper() }
>>
A.TXT
B.TXT
C.TXT
D.TXT

From this, we can see that, as we’re learning to use PowerShell, we don’t have to aban-
don all of the hard-won knowledge we’ve accumulated with cmd.exe scripting over
the years. We can mix and match as we see fit.

A.2 POWERSHELL AND UNIX SHELLS

In this section, we’ll look at examples where we compare PowerShell to the UNIX
shells, in particular the Bourne shell family (sh, ksh, bash, and so on). While inspired
by these shells, PowerShell is very different from the UNIX shells. The most obvious
difference is that PowerShell uses objects as the basic model of interaction instead of
strings. Second, the list of “built-in” commands is both larger and user extensible.
There is no difference between the built-in commands and user-created extension
cmdlets. This model is necessitated by and a consequence of the decision to use
objects. The out-of-process extension model used by traditional shells is simply
impractical for an object-based shell. Even using XML as an intermediate representa-
tion is impractical due to the cost of serializing and deserializing each object.

Instead of doing a feature-by-feature comparison between PowerShell and the
UNIX shells, the approach we’ll use in this section is to work through a set of illustra-
tive examples of each.

A.2.1 Example: Stopping all processes

To stop all processes that begin with the letter “p” on a UNIX system, we would have
to type the following shell command line:

$ ps -e | grep " p" | awk '{ print $1 }' | xargs kill
488 APPENDIX A: CO M P A R I N G POWERSH E L L

The ps command retrieves a list of processes and sends the output text to grep. The
grep command searches the string for processes whose names begin with “p”. The
output of grep is, in turn, sent to the awk command, which selects the first column
in the input text (which is in the process ID) and then passes those to the xargs com-
mand. The xargs command then executes the kill command for each process it
receives as input. Beyond the complexity of the number of stages that need to be exe-
cuted, this command is also fragile. The problem is that the ps command behaves dif-
ferently on different systems (and sometimes on different versions of the same
system). For example, the -e flag on ps may not be present, or if the processed com-
mand is not in column 1 of the output, this command-line procedure will fail.

Now let’s look at the equivalent command in PowerShell. The corresponding
command is both simpler and more understandable.

PS (1) > get-process p* | stop-process

This command line simply says “get the processes whose names start with ‘p’ and stop
them”. The Get-Process cmdlet takes an argument that matches the process name;
the objects returned by Get-Process are passed directly to the Stop-Process
cmdlet, which acts on those objects by stopping them. Now let’s look at a more
sophisticated example.

A.2.2 Example: Stopping a filtered list of processes

Let’s tackle a more complex task: “find the processes that use more than 10MB of
memory and kill them”. The UNIX commands to do this are:

$ ps -el | awk '{ if ($6 > (1024*10)) { print $3 } }' |
grep -v PID | xargs kill

The success of this command line relies on the user knowing that the ps -el com-
mand will return the size of the process in kilobytes (KB) in column 6 and that the
PID of the process is in column 3. It also requires that the first row in the output of ps
be removed..

Now let’s look at the corresponding PowerShell commands. Again, the command
is shorter and simpler.

PS (2) > get-process | where { $_.VS -gt 10M } | stop-process

Here we can see that the commands act against objects rather than against text. There
is no issue with determining the column that contains the size of the process, or which
column contains the ProcessID. The memory size may be referred to logically, by its
name. The Where cmdlet can inspect the incoming object directly and refer to its
properties. The comparison of the value for that property is direct and understandable.
 APPENDIX A: CO M P A R I N G POWERSH E L L 489

A.2.3 Example: Calculating the size of a directory

In this example, we want to calculate the number of bytes in the files in a directory.
We’ll iterate over the files, getting the length and adding it to a variable, and then
print the variable. First, we’ll look at the UNIX shell code.

$ tot=0; for file in $(ls)
> do

> set -- $(ls -log $file)
> echo $3
> ((tot = $tot + $3))
> done; echo $tot

This example uses the set shell command that creates numbered variables for each
whitespace-separated element in the line rather than the awk command as in earlier
examples. If the awk command were used, it would be possible to reduce the steps to
the following:

$ ls –l | awk ‘{ tot += $5; print tot; }’ | tail -1

This reduces the complexity of what we typed, but requires that we know both the
shell language and also how to script in awk, which has its own complete language.

The PowerShell loop is similar; each file in the directory is needed, but it is far
simpler, as the information about the file is already retrieved as part of the file infor-
mation object.

PS (3) > get-childitem | measure-object -Property length

The Measure-Object cmdlet interacts with objects, and if it is provided with a
property from the object, it will sum the values of that property. Because the property
length represents the length of the file, the Measure-Object cmdlet is able to act
directly on the object by referring to the property name rather than “knowing” that
the length of the file is in column 3 or column 5.

A.2.4 Example: Working with dynamic values

Many objects provided by the system are not static but dynamic. This means that
after an object is acquired, it’s not necessary to reacquire the object at a later time
because the data in the object is continually updated as the conditions of the system
change. Conversely, any changes we make to these objects are reflected immediately in
the system. We call these live objects.

As an example, suppose one wanted to collect the amount of processor time that
a process used over time. In the traditional UNIX model, the ps command would need
to be run repeatedly, the appropriate column in the output would need to be found,
and then the subtraction would need to be done. With a shell that is able to access live
process objects, we only have to get the process object once and, since this object is
continually updated by the system, we can keep rereading the same property. The fol-
lowing examples illustrate the differences, where the memory size of an application is
490 APPENDIX A: CO M P A R I N G POWERSH E L L

checked in 10-second intervals and the differences are output. First the UNIX shell
script to do this:

$ while [true]
do
 msize1=$(ps -el|grep application|grep -v grep|awk '{ print $6}')
 sleep 10
 msize2=$(ps -el|grep application|grep -v grep|awk '{print $6}')
 expr $msize2 - $msize1
 msize1=$msize2
done

Now the same example in PowerShell:

PS> $app = get-process application
PS> while ($true) {
>> $msize1 = $app.VS
>> start-sleep 10
>> $app.VS - $msize1
>> }

Again, the PowerShell script is quite a bit simpler and more easily understood.

A.2.5 Example: Monitoring the life of a process

It is even more difficult to determine whether a specific process is no longer running.
In this case, the UNIX user must collect the list of processes and compare them to
another list.

$ processToWatch=$(ps -e | grep application | awk '{ print $1 }'
$ while [true]
> do
> sleep 10
> processToCheck=$(ps -e |grep application |awk '{print $1}')
> if [-z "$processToCheck" -or \
> "$processToWatch" != "$processToCheck"]
> then
> echo "Process application is not running"
> return
> fi
> done

In PowerShell it looks like:

PS (1) > $processToWatch = get-process application
PS (2) > $processToWatch.WaitForExit()

As is seen in this example, the PowerShell user need only collect the object and then
just wait to be notified that the object has exited.

A.2.6 Example: Checking for prerelease binaries

Suppose we want to determine which processes were compiled as prerelease code.
This information is not kept in the standard UNIX executable, so we would need a set
 APPENDIX A: CO M P A R I N G POWERSH E L L 491

of specialized utilities to add this information to the binary and then another set of
utilities to collect this information. These utilities do not exist; it is not possible to
accomplish this task. This information is, however, part of the standard Windows exe-
cutable file format. Here’s how we can use PowerShell to find out which of the run-
ning processes on the system are marked as prerelease binaries.

PS (1) > get-process | where {
>> $_.mainmodule.FileVersioninfo.isPreRelease}
>>
Handles NPM(K) PM(K) WS(K) VS(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 643 88 1024 1544 15 14.06 1700 AdtAgent
 453 15 25280 7268 199 91.70 3952 devenv

In this example, we’re using a cascade of properties. The appropriate property from
the process object (MainModule) is inspected, the property FileVersionInfo is
referenced (a property of MainModule), and the value of the property IsPreRe-
lease is used to filter the results. If IsPreRelease is true, the objects that are out-
put by the Get-Process cmdlet are output.

A.2.7 Example: Uppercasing a string

The availability of methods on objects creates an explosion of possibilities. For exam-
ple, if we want to change the case of a string from lowercase to uppercase, we would
do the following in a UNIX shell.

$ echo "this is a string" | tr [:lower:] [:upper:]

or

$ echo "this is a string" | tr '[a-z]' '[A-Z]'

Now let’s see what this looks like in PowerShell:

PS (1) > "this is a string".ToUpper()

Here we can use the ToUpper() method on the string object instead of having to use
external commands such as tr to do the mapping.

A.2.8 Example: Inserting text into a string

Now let’s look at another example using methods. Suppose we want the string
“ABC” to be inserted after the first character in the word “string”, so we have the
result “sABCtring”. Here’s how to do it with the UNIX shell, which requires using
the sed command.

$ echo "string" | sed "s|\(.\)\(.*)|\1ABC\2|"

We could use the same approach—regular expressions—in PowerShell, which looks
like:

PS (1) > "string" -replace '(.)(.*)','$1ABC$2'
sABCtring
492 APPENDIX A: CO M P A R I N G POWERSH E L L

or we could simply use the insert method on the string object to accomplish the
same thing, but much more directly:

PS (2) > "string".Insert(1,"ABC")
sABCtring

While both examples require specific knowledge, using the Insert() method is
more intuitive than using the regular expressions.

A.3 POWERSHELL AND PERL

If you can figure out Perl, PowerShell should be a breeze. There are, however, a couple
things Perl programmers need to be aware of. The first two also apply to most other
programming languages as well:

• Functions in PowerShell are invoked like commands.

• The result of a statement is not voided by default.

These two items are discussed more in the section on C# and in chapter 7 on func-
tions and scripts.

There are a couple things that are very Perl-specific, however. Where Perl uses dif-
ferent sigils for different types of variables ($ for scalar, @ for array, and % for hash-
tables), PowerShell uses only the dollar sign for all types of variables. In fact, because
it’s based on .NET, PowerShell has to deal with many more data types than Perl does,
so it’s not possible to use sigils for each type.

Another significant difference for Perl users is that arrays are passed to functions
by reference automatically. If you have a variable containing three objects and you
pass it to a function, it will be passed as a single argument containing a reference to
the array. Let’s look at an example to illustrate this. First we’ll define a function that
takes three arguments:

PS (3) > function foo ($a,$b,$c) { "a=$a`nb=$b`nc=$c" }

Next we invoke it with the arguments 1, 2, and 3.

PS (4) > foo 1 2 3
a=1
b=2
c=3

Each argument is printed as expected. Now let’s define an array containing 1,2,3 and
pass that array to the function:

PS (5) > $a = 1,2,3
PS (6) > foo $a
a=1 2 3
b=
c=
 APPENDIX A: CO M P A R I N G POWERSH E L L 493

This time, the three values all end up in $a because the array is passed by reference as
a single argument instead of the elements being distributed across the arguments.

Finally a common question that Perl users ask is if PowerShell has the equivalent
of the Perl map operation. The answer is yes—approximately. The Foreach-
Object cmdlet (or its alias %) is essentially the equivalent of Perl’s map. The Perl map
operation looks like:

map <BLOCK> <LIST>

and the PowerShell equivalent is

<LIST> | foreach <BLOCK>

In practice, the Foreach-Object cmdlet is more powerful than map because it also
allows initialization and completion blocks:

$list | foreach {begin code…} {process code…} {end code…}

And of course, because it is a pipelined operation, it is more easily composable than
the map operator. For example, here’s a way to find out what cmdlets have no alias
that takes advantage of nested pipelines with begin and end blocks:

gal | %{$ac = @{}} {$ac[$_.definition] = $true} {
 gcm | ?{! $ac[$_.name]}}

This example initializes a hashtable in $ac in the begin clause, then for each alias
returned by gal, it adds the definition as the hashtable key and sets its value to true.
Finally, in the end clause it uses the where-object cmdlet (whose alias is ?) to filter
the output of gcm so only commands that don’t have entries in the hashtable are emitted.

A.4 POWERSHELL AND C#

PowerShell is syntactically quite similar to C#. For example, the flow-control state-
ments are mostly the same in PowerShell as they are in C# (except that PowerShell is
not case-sensitive). There are, however, a number of common problems that C# users
encounter when they start using PowerShell. These problems stem from the fact that
PowerShell has shell-like parsing and semantics. These issues are documented at some
length in chapter 11, but we’ll reiterate them here in a condensed form.

A.4.1 Calling functions and commands

PowerShell functions are commands and are invoked like commands, not like meth-
ods. This means that if you have a function called my-function that takes three
arguments, it will be invoked like:

my-command 1 2 3

not

my-command(1,2,3)
494 APPENDIX A: CO M P A R I N G POWERSH E L L

The latter example is actually invoking the command with a single argument that is
an array of three values, not three separate arguments.

A.4.2 Calling methods

Methods are invoked in PowerShell as they are in C# except that spaces are not permit-
ted between the name of a method call and the opening parenthesis of the arguments.
Therefore the expression

$data.method($a1, $a2)

is valid but

$data.method ($a1, $a2)

will result in a syntax error. Similarly, spaces are not permitted around the period (.)
between the expression and the method name. These restrictions are needed because
of the way PowerShell parses expressions and how it parses command parameters.
Because command parameters are separated by spaces, allowing spaces in method calls
can lead to confusion. Chapter 2 discusses this topic in much greater detail.

A.4.3 Returning values

PowerShell supports multiple implicit returns from a function. By implicit, we mean
that values are simply emitted from a function without using the return statement.
The following function

function foo { 13 }

will return the number 13, and the function

function bar (10; 11; 12 }

will return three values: 10, 11, and 12. While this seems odd in a programming lan-
guage, it makes perfect sense in a shell (remember, it’s named PowerShell for a reason).
In fact, this characteristic can greatly simplify our code because we don’t need to
explicitly accumulate the data when we want to return a collection from a function.
The system will take care of that for us.

A corollary is that, by default, the return value of a statement is not voided. This
means that if we call a method that returns a value we aren’t going to use, we have to
explicitly discard it, either by casting it to [void] or redirecting output to $null.
For example, adding a value to an ArrayList returns a number indicating the num-
ber of elements in the collection. See chapter 7 for the full details of the behavior of
PowerShell functions.

A.4.4 Variables and scoping

Unlike most programming languages, PowerShell is dynamically scoped. This means
that the variables in the calling function are visible in the called function. Variables
 APPENDIX A: CO M P A R I N G POWERSH E L L 495

come into existence on first assignment and vanish when they go out of scope. You
can use scope modifiers to explicitly change variables in other scopes if necessary.

While PowerShell does not require variables to be typed, it is possible to add type
constraints to them. The semantics, however, are not quite the same as in C#. In
PowerShell, a type-constrained variable will accept any value that can be converted to
the constraining type rather than strictly requiring that the value be of the same type
or a subtype.

A.5 POWERSHELL AND VBSCRIPT

If cmd.exe is the traditional shell on Windows, VBScript has become the standard
scripting tool on Windows. Let’s look at some things a VBScript user should know
when working with PowerShell.

PowerShell shares very little syntax with VBScript, which is mostly due to the ver-
bosity of that syntax. Because the primary mode of use of PowerShell is as an inter-
active shell, we chose the more concise C-style syntax. (The fact that the two
languages are so different may actually help the VBScript user, as they are less likely
to get mixed up between PowerShell and VBScript.)

Most of the issues that were discussed in section A.4 also apply to VBScript
(and, indeed, most other programming languages). This section contains
material that is more specific to VBScript.

Since management scripting in VBScript is mostly about working with COM and
WMI objects, the most important thing for a VBScript user to know about are the
equivalents to CreateObject() for creating COM objects and GetObject() for
getting instances of WMI objects. The way to create a COM object in PowerShell is
with the New-Object command as in:

$ie = New-Object –com InternetExplorer.Application

And the way to get a WMI object is with the Get-WmiObject cmdlet:

$tz = Get-WMIObject win32_timezone

Chapter 12 covers these subjects in detail. That chapter also includes a comparison of
the same script written in VBScript and in PowerShell.

While these are the most important operational details for a VBScript user, there
are a number of other points that are useful to know:

• Variables always begin with a “$” like $a.

• Method invocations must always include the parentheses in the method name,
since it is possible for an object to have a property named SomeName and a
method SomeName().

• Attempting to read nonexistent object properties does not cause an error.

• There is no “Set” keyword for setting object properties.

AUTHOR’S
NOTE
496 APPENDIX A: CO M P A R I N G POWERSH E L L

• PowerShell strings can be delimited with either single or double quotes. Inside
double quotes, escape sequences and variable references are expanded. See chap-
ter 3 for details on how this works and how to use it.

• PowerShell uses quite different comparison operators: -lt instead of “<” for
less-than, -gt instead of “>” for greater-than, and so on. See chapter 4 for the
details on PowerShell operators. PowerShell comparisons are also case-insensi-
tive by default.

• Arrays are indexed using square brackets instead of parentheses. Assigning to an
element in an array looks like:

 $a[2] = "Hello"

• The plus (+) operator is used for concatenating strings and arrays. The type of
the left-hand argument controls the type of the conversion. See chapter 7 for
details.

• The PowerShell syntax is very C-like in that statement blocks are delimited with
braces “{” and “}” instead of keywords. For example, in PowerShell we would
write

 if ($false -neq $true) { "false is not true "}

instead of

 If (False <> True) Then
 MsgBox "false is not true"
 End If

• Multiple statements on one line are separated with the semicolon “;” instead of
the colon as in VBScript.

• Like in VBScript, if a statement is syntactically complete at the end of the line,
no line termination is needed. However, if a PowerShell statement is not com-
plete, it may be spread across several lines without explicit continuation. If a
continuation character is needed, continuation is specified by a single backtick
“`” at the end of the line. Note that backtick (`) is not the same character as sin-
gle-quote (').

• While PowerShell doesn’t have the exact equivalent of option explicit.
which requires a variable to be declared before it can be used, it does have a fea-
ture that requires that variables be initialized before they are used. This is
turned on with the following command:

 set-psdebug –strict

• Any expression that returns a value in a function will become part of the return
value of the function. There is no need to assign to the function name. There is
also a return statement in PowerShell that is only needed if you want to
 APPENDIX A: CO M P A R I N G POWERSH E L L 497

change the flow of control in the function and return early. For example, in
VBScript, we might write

 Function GetHello
 GetHello = "Hello"
 End Function

• The PowerShell equivalent is simply

 function Get-Hello { "Hello" }

• The closest equivalent to the VB on error construct is the PowerShell trap
statement, which is covered in chapter 9.

Even with all of these differences, sometimes it’s surprisingly easy to translate a
VBScript into a PowerShell script. This is because, in many cases, we’re working with
the same set of WMI or COM objects. Of course, some other things are done quite
differently—string manipulation being a prime example. Take a look at the examples
in section 12.2.4 to see an example of a small VBScript translated into a PowerShell
script

Also, even when the translations are simple, they rarely take advantage of the fea-
tures that PowerShell has for creating more concise scripts.

Lastly, by using the ScriptControl COM object, it’s possible to include fragments
of VBScript code in a PowerShell script.
498 APPENDIX A: CO M P A R I N G POWERSH E L L

Admin examples

A P P E N D I X B
Although this book is not intended to be a solutions cookbook, it’s always handy to
have a few domain-specific examples. This section contains a number of short examples
showing how common administration tasks might be accomplished with PowerShell.

B.1 GETTING ACTIVE DIRECTORY
DOMAIN INFORMATION

The following script will list the active directory information for a list of computers.
If no computer names are provided, it shows the domain information for this com-
puter. You can optionally specify a set of properties to return.

To display the domain information for the current host:

Get-DomainInfo

or

Get-DomainInfo .

To display the domain information for a set of machines:

Get-DomainInfo machine1, machine2, machine3

To get the domain information for a list of machines stored in a text file:

Get-Content machines.txt | Get-DomainInfo

To list only the domain name and domain controller name for the current machine:

Get-DomainInfo –Properties DomainName, DomainControllerName
499

The code for this script is shown in listing B.1

param(
 [string[]] $ComputerNames = @(),
 [string[]] $Properties = @()
)

$ComputerNames += @($input)

if (! $ComputerNames)
{
 $ComputerNames = "."
}

if ($Properties.Length -eq 0)
{
 Get-WmiObject -Class Win32_NTDomain `
 -ComputerName $ComputerNames
}
else
{
 Get-WmiObject -Class Win32_NTDomain `
 -ComputerName $ComputerNames |
 select-object $properties
}

The script uses the Get-WmiObject cmdlet to retrieve the information from a set
of machines and return it. If the option list of properties is specified then the
Select-Object cmdlet is used to extract those properties from the result set.

B.2 LISTING INSTALLED SOFTWARE FEATURES

This script will display a list of the software features installed on a set of computers.
You can optionally specify a list of properties to return (by default, all properties are
returned). To show all of the properties for the current computer, simply run

Get-SoftwareFeatures

To get the software features from a list of computers, you can either pass them on the
command line

Get-SoftwareFeatures machine1, machine2, machine2

or input them from the pipeline

get-content machines.txt | Get-SoftwareFeatures

You can also specify a subset of the properties to display. For example, to display only
the vendor and caption fields, you would do

Listing B.1 Get-DomainInfo script

Retrieve
information

B

Extract
properties

C

B

C

500 APPENDIX B: AD MI N EX A M P L E S

Get-SoftwareFeatures –properties Vendor, Caption

The listing for this script is shown in listing B.2.

param(
 [string[]] $ComputerNames = @(),
 [string[]] $Properties = @()
)

$ComputerNames += @($input)

if (! $ComputerNames)
{
 $ComputerNames = "."
}

if ($Properties.Length -eq 0)
{
 Get-WmiObject -Class Win32_SoftwareFeature `
 -ComputerName $ComputerNames
}
else
{
 Get-WmiObject -Class Win32_SoftwareFeature `
 -ComputerName $ComputerNames |
 select-object $properties
}

As in the previous example, Get-WmiObject is used to retrieve the data and
optionally filter it .

B.3 RETRIEVING TERMINAL SERVER PROPERTIES

Terminal server properties can also be retrieved using simple WMI queries. For exam-
ple, to list the terminal server service properties on the current machine, use the fol-
lowing command:

get-wmiobject -class Win32_TerminalService –computername .

To list the terminal services accounts, we can use the Win32_TSAccount object as
follows

get-wmiobject -class Win32_TSAccount –computername . |
 select AccountName, PermisionsAllowed

To get the terminal services remote control setting from a computer, you can do:

get-wmiobject Win32_TSRemoteControlSetting |
select-object TerminalName, LevelOfControl

Listing B.2 Get-SoftwareFeatures.ps1 script

Retrieve
information

B

Extract
properties

C

B
C

 APPENDIX B: AD MI N EX A M P L E S 501

Note that in this example, we used the fact that the Class parameter is positional so
we didn’t have to specify -class. We also used the default value for ComputerName
with “.”—the current computer.

To see a list of all of the WMI classes that can be used for managing terminal ser-
vices, run the following command:

PS (1) > get-wmiobject -list |
>> where {$_.name -like "win32_ts*"} | select name
>>

Name

Win32_TSNetworkAdapterSettingError
Win32_TSRemoteControlSettingError
Win32_TSEnvironmentSettingError
Win32_TSSessionDirectoryError
Win32_TSLogonSettingError
Win32_TSPermissionsSettingError
Win32_TSClientSettingError
Win32_TSGeneralSettingError
Win32_TSSessionSettingError
Win32_TSSessionDirectory
Win32_TSRemoteControlSetting
Win32_TSNetworkAdapterSetting
Win32_TSAccount
Win32_TSGeneralSetting
Win32_TSPermissionsSetting
Win32_TSClientSetting
Win32_TSEnvironmentSetting
Win32_TSNetworkAdapterListSetting
Win32_TSLogonSetting
Win32_TSSessionSetting
Win32_TSSessionDirectorySetting

This command searches all of the WMI classes looking for ones that have names start-
ing with the sequence “Win32_ts”.

B.4 LIST HOT FIXES INSTALLED ON A MACHINE

The following script will list the hot fixes installed on a list of computers. If no com-
puter names are provided, it shows the hot fix information for this computer. We can
optionally specify a set of properties to return. To get a list of all hot fixes installed on
the current computer displaying all properties, do

Get-HotFixes

If you only want to see certain properties:

Get-HotFixes -prop ServicePackInEffect,Description

The listing for this script is shown in listing B.3.
502 APPENDIX B: AD MI N EX A M P L E S

param(
 [string[]] $ComputerNames = @(),
 [string[]] $Properties = @()
)

$ComputerNames += @($input)

if (! $ComputerNames)
{
 $ComputerNames = "."
}

if ($Properties.Length -eq 0)
{
 Get-WmiObject -Class Win32_QuickFixEngineering `
 -ComputerName $ComputerNames
}
else
{
 Get-WmiObject -Class Win32_QuickFixEngineering `
 -ComputerName $ComputerNames |
 select-object $properties
}

At this point, we can see that there is a pretty consistent solution for all of these exam-
ples. Once we know the WMI class for a particular feature, the pattern for getting
information about that feature is basically the same. PowerShell makes it easy to use
WMI on the command line to retrieve information about the system once you know
the class name.

B.5 FINDING MACHINES MISSING A HOT FIX

Let’s build on the script we wrote in the previous example to accomplish a more spe-
cific task. We want to write a new script that will search computers for missing hot
fixes. Here’s what we want the output to look like

PS (1) > ./Get-MachinesMissingHotfix.ps1 –computer . `
>> -hotfix KB902841,KB902842,KB902843,KB902844
>>

Name Value
---- -----
name .
missing {KB902842, KB902843, KB902844}

This result of the command shows that three of the four hot fixes aren’t installed on
the current machine.

Listing B.3 Get-HotFixes.ps1 script
 APPENDIX B: AD MI N EX A M P L E S 503

Some of these hot fix identifiers are fictitious so we can see some failures.
So don’t be worried if you cannot find them in the knowledge base.

Notice that the output retains structure. Instead of emitting strings, we’re going to
emit hashtables so they can more easily be used in further processing such as building
update packages for distribution. And of course, since we want to be able to check a
list of machines, the script can either take the list on the command line or read it from
input stream as shown in the next example.

PS (2) > Get-Content machines.txt|./Get-MachinesMissingHotfix.ps1 `
>> -hotfix KB902841,KB902842,KB902843,KB902844
>>

Name Value
---- -----
name machine1
missing {KB902842, KB902843, KB902844}
name machine4
missing {KB902842, KB902843, KB902844}
name machine5
missing {KB902841,KB902842, KB902843, KB902844}

The file “machines.txt” contains a list of machine names “machine1” through
“machine5” to check. In the output, we see that machines 2 and 3 are up to date—
they don’t show up in the output. Machines 1 and 4 are missing three hot fixes and
machine 5 is missing all four.

This script is shown in listing B.4.

param(
 [string[]] $ComputerName = @(),
 [string[]] $HotFix = $(throw "you must specify a hotfix id")
)

$ComputerName += @($input)
if (! $ComputerName)
{
 $ComputerName = "."
}

$myDir = split-path $MyInvocation.MyCommand.Definition
$gh = join-path $myDir Get-HotFixes.ps1

foreach ($name in $ComputerName)
{
 $sps = & $gh $name | foreach { $_.ServicePackInEffect}

 $result = @{name = $name; missing = @() }

 foreach ($hf in $HotFix)

AUTHOR’S
NOTE

Listing B.4 Get-MachinesMissingHotfix.ps1 script

B Calculate list of
computers

C Find path to
Get-HotFixes

Get hot fix list
for machine

D

Initialize result
tableE
504 APPENDIX B: AD MI N EX A M P L E S

 {
 if ($sps -notcontains $hf)
 {
 $result.missing += $hf
 }
 }
 if ($result.missing.length -gt 0)
 {

 $result
 }
}

This script takes two parameters—the list of computer names to check and the list of
hot fixes to check for. If no computer names are specified, the script defaults to check-
ing the current computer. We can specify names of computers to check both on the
command line and in the input stream. We’ll catenate these two lists together .

We’re going to require that the Get-HotFixes script be in the same directory as
this script. Given that’s the case, we can figure out the path to the Get-HotFixes
script by getting the path to the current script, which is available in
$MyInvocation, and then use this to build up the path to the Get-Hotfixes script.
(This is a generally useful technique to keep in mind when you’re writing other scripts.)

Once we have the path to the Get-HotFixes command, we use it to get the list
of hot fixes , but we want only the ServicePackInEffect field, so we’ll use the
foreach cmdlet to extract just this property.

We initialize the variable $result to be a hashtable object with the current
machine name and set the list of missing hot fixes to be an empty array . Note that
we may not return this object if there are no missing hot fixes. We’ll check that by see-
ing whether the length of the missing member in that hashtable is 0.

Now loop over the list of hot fixes, checking each hot fix to see whether it’s in the
list installed on the target machine. If the list of installed hot fixes doesn’t contain the
current hot fix identifier, append that identifier to the missing array in the
result hashtable.

Finally, if, after checking all of the hot fixes, the missing array in the hashtable
is still of length zero, this machine has all of the hot fixes installed. If the array is non-
zero then emit the $result object .

B.6 WORKING WITH THE EVENT LOG

A major source of information for admins is the event log. PowerShell has exactly one
cmdlet for dealing with the event log: Get-EventLog. The syntax for this cmdlet is
shown in figure B.1.

To get a list of the existing event logs, use the -list parameter. This returns a
collection of objects of type System.Diagnostics.EventLog. Once we have
these objects, we can then do pretty much anything we want on the associated log.

F Add missing
hot fixes

Emit
result

G

B

C

D

E

F

G

 APPENDIX B: AD MI N EX A M P L E S 505

PS (1) > get-eventlog -list

 Max(K) Retain OverflowAction Entries Name
 ------ ------ -------------- ------- ----
 512 7 OverwriteOlder 48 ACEEventLog
 512 7 OverwriteOlder 2,895 Application
 512 7 OverwriteOlder 0 Internet E...
 15,360 0 OverwriteAsNeeded 80 PowerShell
 512 7 OverwriteOlder 1 Security
 512 7 OverwriteOlder 2,105 System

In the output from this example, we can see that there are a number of logs available
on this system.

B.6.1 Getting a specific EventLog object

Let’s get the log object for the PowerShell event log (see chapter 9 for information on
errors and events in PowerShell).

PS (1) > $log = get-eventlog -list |
>> ? { $_.logdisplayname -like "Pow*" }
>>

And verify that we got the right log:

PS (2) > $log.LogDisplayName
PowerShell

Now let’s look at the five newest events in the log.

Get-EventLog [-LogName] <String > [-Newest <Int32>]

Get-EventLog -List [-AsString]

The Get-EventLog cmdlet

The event log to get The number of most
recent events to

retrieve

Optionally return just
the log names instead

of the EventLog objects
List the event logs
that are available

Figure B.1 Get-EventLog is the cmdlet we use to retrieve events from the event log. The

syntax for this command is shown here. You can get either a list of existing event logs or the

contents of a specific event log.
506 APPENDIX B: AD MI N EX A M P L E S

PS (3) > get-eventlog $log.LogDisplayName -newest 5

Index Time Type Source EventID Mess
 age
----- ---- ---- ------ ------- ----
 128 Sep 14 22:52 Info PowerShell 400 T...
 127 Sep 14 22:52 Info PowerShell 600 T...
 126 Sep 14 22:52 Info PowerShell 600 T...

 125 Sep 14 22:52 Info PowerShell 600 T...
 124 Sep 14 22:52 Info PowerShell 600 T...

But what about the log itself? For example, let’s look at the maximum log size.

PS (4) > $log.MaximumKilobytes
64

The log on this computer is currently set to 64K. Now let’s double it.

PS (7) > $log.MaximumKilobytes *= 2
PS (8) > $log.MaximumKilobytes
128

As we can see, this type of manipulation is quite simple.

B.6.2 The event log as a live object

One important characteristic of the EventLog object is that it is a live object. This
means that once we get the object, we can continue to check it for updates to see
what’s changed. For example, we take a look at the PowerShell log in $log.

PS (9) > $log

 Max(K) Retain OverflowAction Entries Name
 ------ ------ -------------- ------- ----
 128 0 OverwriteAsNeeded 40 PowerShell

Currently it shows that there are 40 entries in the log. Now we’ll start some additional
instances of PowerShell which will create additional entries in this log. We’ll pass in
the exit command so each new instance immediately exits.

PS (10) > powershell exit
PS (11) > powershell exit
PS (12) > powershell exit

Now we’ll check the log again

PS (13) > $log

 Max(K) Retain OverflowAction Entries Name
 ------ ------ -------------- ------- ----
 128 0 OverwriteAsNeeded 88 PowerShell
 APPENDIX B: AD MI N EX A M P L E S 507

and we see that the log has been updated with the new entries. Now let’s clear the log.
We’ll do this is a separate instance of PowerShell to further illustrate the live nature of
the EventLog object. Here’s the command to do this:

PS (14) > powershell {
>> (get-eventlog -list |
>> ?{$_.LogDisplayName -like "Pow*"}).Clear()
>> }

>>

This command passes a scriptblock to a new PowerShell process. This scriptblock
contains code to get the PowerShell EventLog object and then call the Clear()
method on it. When the child process finishes running the command and exits, we’ll
again check the count in the current log:

PS (15) > $log

 Max(K) Retain OverflowAction Entries Name
 ------ ------ -------------- ------- ----
 128 0 OverwriteAsNeeded 8 PowerShell

And we see that the log has been cleared.

B.6.3 Getting remote event logs

One feature that is conspicuously missing from the Get-EventLog cmdlet is the
ability to access the event logs on other machines. Fortunately, this is easy to work
around by constructing the EventLog objects directly. For example, to access the
event log on a machine named “test1”, we can use the following command.

PS (1) > $pslog = new-object System.Diagnostics.EventLog (
>> "PowerShell", "test1")
>>

Now that we have an instance of the EventLog object, we can access the entries in
that log as we did for the local logs. For example, to see the first six entries in the log,
we can do:

PS (2) > $pslog.Entries[0..5]

Index Time Type Source EventID Mess
 age
----- ---- ---- ------ ------- ----
 1 Sep 16 17:18 Info PowerShell 601 T...
 2 Sep 16 17:18 Info PowerShell 601 T...
 3 Sep 16 17:18 Info PowerShell 601 T...
 4 Sep 16 17:18 Info PowerShell 601 T...
 5 Sep 16 17:18 Info PowerShell 601 T...
 6 Sep 16 17:18 Info PowerShell 601 T...

Now let’s get the last six entries from the log using the select command. These are
the most recent entries in the log.
508 APPENDIX B: AD MI N EX A M P L E S

PS (3) > $pslog.Entries | select -last 6

Index Time Type Source EventID Mess
 age
----- ---- ---- ------ ------- ----
 54 Sep 16 21:49 Info PowerShell 601 T...
 55 Sep 16 21:49 Info PowerShell 601 T...
 56 Sep 16 21:49 Info PowerShell 601 T...

 57 Sep 16 21:49 Info PowerShell 601 T...
 58 Sep 16 21:49 Info PowerShell 601 T...
 59 Sep 16 21:49 Info PowerShell 403 T...

These examples show that, even though there isn’t cmdlet support for a particular fea-
ture, using the .NET classes is frequently not much more difficult.

B.6.4 Saving event logs

We can use PowerShell’s Export-CliXML cmdlet to save the event log in a form that
we can easily rehydrate for future processing. This is shown in the next example.

PS (4) > $pslog.Entries | export-clixml c:\temp\pslog.clixml

Now let’s retrieve the data. Again, the command is very simple.

PS (5) > $data = import-clixml C:\temp\pslog.clixml

Let’s compare the original to the recovered data. Here are the entries from the live log:

PS (6) > $pslog.Entries[0..3] |
>> ft -auto Index,Time,EventID,Message
>>

Index Time EventID Message
----- ---- ------- -------
 1 601 The description for Event ID '601' in...

 2 601 The description for Event ID '601' in...
 3 601 The description for Event ID '601' in...
 4 601 The description for Event ID '601' in...

And here are the entries from the rehydrated data:

PS (7) > $data[0..3] |
>> ft -auto Index,Time,EventID,Message
>>

Index Time EventID Message
----- ---- ------- -------
 1 601 The description for Event ID '601' in...
 2 601 The description for Event ID '601' in...
 3 601 The description for Event ID '601' in...
 4 601 The description for Event ID '601' in...
 APPENDIX B: AD MI N EX A M P L E S 509

So the contents are more or less identical. Of course, the rehydrated data has one sig-
nificant difference: It’s no longer a live object. It has no methods, and changing any of
the properties will have no effect on the system.

B.6.5 Writing events

The other major thing that’s missing from the PowerShell event log support is the
ability to write events. Again, we can work around this by using the .NET classes. In
the following example, we’ll add some events to the PowerShell event log. First we
need to create an event source:

PS (1) > [System.Diagnostics.EventLog]::CreateEventSource(
>> "me", "PowerShell")
>>

Next, we’ll get the PowerShell event log on this machine:

PS (2) > $pslog = new-object System.Diagnostics.EventLog (
>> "PowerShell", ".")
>>

And set it the event source for this object to match the event source we just created.

PS (2) > $pslog.Source="me"

Now we can use this object to write a log entry by calling the WriteEntry() method.

PS (4) > $pslog.WriteEntry("Hi")

Finally, we’ll verify that the event has been written to the log.

PS (5) > $pslog.Entries | select -last 8

Index Time Type Source EventID Mess
 age
----- ---- ---- ------ ------- ----
 2 Sep 16 17:18 Info PowerShell 601 T...
 3 Sep 16 17:18 Info PowerShell 601 T...
 4 Sep 16 17:18 Info PowerShell 601 T...
 5 Sep 16 17:18 Info PowerShell 601 T...
 6 Sep 16 17:18 Info PowerShell 601 T...
 7 Sep 16 17:18 Info PowerShell 601 T...
 8 Sep 16 17:18 Info PowerShell 403 T...
 9 Sep 16 17:30 Info me 0 Hi

And we see that our event has been added to the log.

B.7 WORKING WITH EXISTING UTILITY COMMANDS

Let’s look at how to we can take the text output from an existing utility program and
convert it into a form that is more usable in PowerShell. In this example, we’ll process
the output of the task scheduler utility “schtasks.exe”. First let’s take a look at what the
output of this command looks like:
510 APPENDIX B: AD MI N EX A M P L E S

PS (1) > schtasks

TaskName Next Run Time
 Status
==================================== =======================
= ===============
AppleSoftwareUpdate 12:45:00, 9/30/2006

MP Scheduled Scan 02:06:00, 9/26/2006

This output is a stream of text that we want to turn into objects so we can do things
such as sort it. We want the converted output of this command to look like:

PS (2) > get-sched

TaskName NextRunTime Status
-------- ----------- ------
AppleSoftwareUpd... 9/30/2006 12:45:...
MP Scheduled Sca... 9/26/2006 2:06:0...

I'll admit formatting limitations in this example don’t make it look very attractive.
The more interesting part is that we can then sort the data by NextRunTime by sim-
ply doing:

PS (3) > get-sched | sort NextRunTime

TaskName NextRunTime Status
-------- ----------- ------
MP Scheduled Sca... 9/26/2006 2:06:0...
AppleSoftwareUpd... 9/30/2006 12:45:...

The source for this script is shown in listing B.5. This script is a good illustration of
how to bring the old world of string-based utilities into the new PowerShell world
of objects.

$null,$header,$lines,$data = schtasks /query

function Split-String ($s,[int[]] $indexes)
{
 if (! $s) { return }
 $indexes | foreach {$last=0} {
 [string] $s.substring($last, $_-$last)
 $last = $_+1
 }
 $s.substring($last)
}

$first,$second,$third = $lines.split(" ") |
 foreach { $_.length }
$second+=$first

Listing B.5 The get-sched script

Get dataB

C Helper
function

D Calculate
offsets
 APPENDIX B: AD MI N EX A M P L E S 511

5

$h1,$h2,$h3 = split-string $header $first, $second |
 foreach { $_ -replace " " }

$data | foreach {
 $v1, [datetime] $v2, $v3 = split-string $_ $first, $second

 new-object psobject |
 add-member -pass -mem NoteProperty $h1 $v1 |

 add-member -pass -mem NoteProperty $h2 $v2 |
 add-member -pass -mem NoteProperty $h3 $v3
}

Get the data from the command . As we saw earlier, this data has the format:
empty line, followed by a line of headers, followed by underlines separating the header
from the data and finally the data. We use multiple assignment to separate each of the
sections into its own variable (assigning to null just discards the data). This leaves the
collection of data records in $data.

Next we define a helper function that will split strings into chunks at specific
offsets. We’ll use that to split apart the data records.

Now we’ll figure out how wide the fields are by parsing the underlining . We’ll
split the underlining string on spaces, then get the length of each of these strings and
use those lengths as offsets to split the data into fields.

Next we want to reformat the headers so we can use them as the names of the
properties in the objects we’re going to build. We’ll do this by splitting the header line
up and then removing the spaces from the names.

Finally, turn the data lines into objects with properties. Split each line of data into
three chunks using the offsets we calculated , and then construct a synthetic object
and attach note properties using the header names above. We also know the sec-
ond field is a DateTime object, so we’ll throw in a cast so it’s a strongly typed object
instead of just a string. This allows for more intelligent sorting.

B.8 WORKING WITH ACTIVE DIRECTORY
AND ADSI

Active Directory (AD), which was introduced with Windows 2000, is the cornerstone
of Windows enterprise management. It’s a hierarchical database that is used to man-
age all kinds of enterprise data. In this example, we’ll look at how PowerShell can be
used to script AD.

All of the examples shown in this section were done using ADAM—Active
Directory Application Mode—a free download from Microsoft.com.
ADAM is a standalone Active Directory implementation that doesn’t require
Windows Server to run. It can be installed on a computer running Windows
XP. It’s a great tool for learning about Active Directory.

E Get property
names

Split up
data

F

G Build
objects

B

C

D

E

F
G

AUTHOR’S
NOTE
12 APPENDIX B: AD MI N EX A M P L E S

As with WMI, the keys to PowerShell’s AD support are the ADSI (Active Directory
Service Interface) object adapter and the [ADSI] type shortcut. For the purpose of
these examples, we’ve set up an Active Directory installation for a fictitious company
“Fabrikam.com”.

Although the first version of PowerShell does include features that make
ADSI easier to work with than in other environments, it’s still not ideal.
The best solution would be to have an AD provider that would let us nav-
igate Active Directory in much the same way as we navigate the filesystem
or the registry. Unfortunately, as the PowerShell architect is fond of saying,
“to ship is too choose”. There’s always a next version.

B.8.1 Accessing the Active Directory service

Here’s how we can access the Fabrikam AD service. We take the LDAP (Lightweight
Directory Access Protocol) URL for the service and cast it into an ADSI object.

PS (1) > $domain = [ADSI] `
>> "LDAP://localhost:389/dc=NA,dc=fabrikam,dc=com"
>>

Now that we’ve connected to the Active Directory service, we want to create a new
organizational unit for the human resources (HR) department. We can use the
Create() method on the object in $domain to do this.

PS (2) > $newOU = $domain.Create("OrganizationalUnit", "ou=HR")
PS (3) > $newOU.SetInfo()

Once we’ve created the object, we need to call SetInfo() to cause the server to be
updated.

B.8.2 Adding a user

To retrieve the object that represents the organizational unit we just created, again we
use an [ADSI] cast, but this time we include the element “ou=HR” in the URL.

PS (5) > $ou = [ADSI] `
>> "LDAP://localhost:389/ou=HR,dc=NA,dc=fabrikam,dc=com"
>>

Now we want to create a user object in this department. We’ll use the Create()
method on the object in $ou to create a new “user” object that has the CN (common
name) “Dogbert”.

PS (6) > $newUser = $ou.Create("user", "cn=Dogbert")

And we also want to set some properties on this user, so we use the Put() method on
the user object to do this. (The set of properties we can set is defined by the AD
schema for the user object.)

PS (7) > $newUser.Put("title", "HR Consultant")
PS (8) > $newUser.Put("employeeID", 1)

AUTHOR’S
NOTE
 APPENDIX B: AD MI N EX A M P L E S 513

PS (9) > $newUser.Put("description", "Dog")
PS (10) > $newUser.SetInfo()

We set the title, employeeID, and description properties for this user and
then call SetInfo() to update the server when we’re done.

As one might expect, to retrieve this user object again, we use a URL with the path
element “cn=Dogbert” added to it.

PS (12) > $user = [ADSI] ("LDAP://localhost:389/" +
>> "cn=Dogbert,ou=HR,dc=NA,dc=fabrikam,dc=com")
>>

We should verify that the properties have been set, so let’s display them:

PS (13) > $user.title
HR Consultant
PS (14) > $user.Description
Dog

B.8.3 Adding a group of users

Now let’s see how we can create a bunch of users all at once. We’ll define a set of data
objects where the object contains a name property that will be used to name the
employee and additional properties to set for the user. In this example, we’ll define
this data as an array of hashtables:

PS (15) > $data =
>> @{
>> Name="Catbert"
>> Title="HR Boss"
>> EmployeeID=2
>> Description = "Cat"
>> },
>> @{

>> Name="Birdbert"
>> Title="HR Flunky 1"
>> EmployeeID=3
>> Description = "Bird"
>> },
>> @{
>> Name="Mousebert"
>> Title="HR Flunky 2"
>> EmployeeID=4
>> Description = "Mouse"
>> },
>> @{
>> Name="Fishbert"
>> Title="HR Flunky 3"
>> EmployeeID=5
>> Description = "Fish"
>> }
>>
514 APPENDIX B: AD MI N EX A M P L E S

Now let’s write a function to process this data and add these users to Active Directory.
We’ll call this function New-Employee. This function takes two arguments—the list
of employee objects to create and, optionally, the organizational unit to create them
in. This defaults to the OU we created.

PS (16) > function New-Employee (
>> $employees =
>> $(throw "You must specify at least one employee to add"),
>> [ADSI] $ou =
>> "LDAP://localhost:389/ou=HR,dc=NA,dc=fabrikam,dc=com"
>>)
>> {
>> foreach ($record in $employees)
>> {
>> $newUser = $ou.Create("user", "cn=$($record.Name)")
>> $newUser.Put("title", $record.Title)
>> $newUser.Put("employeeID", $record.employeeID)
>> $newUser.Put("description", $record.Description)
>> $newUser.SetInfo()
>> }
>> }
>>

This function iterates over the list of employees, creating each one, then setting the
properties, and writing the object back to the server.

This function doesn’t care what type of objects are in $employees (or even if it’s
a collection). The only thing that matters is that the objects have the correct set of prop-
erties. This means that instead of using a hashtable, you could use an XML object or
the result of using the Import-Csv cmdlet.

Using Import-Csv is particularly interesting because it means that you
can use a spreadsheet application to enter the data for your users, export
the spreadsheet to a CSV file, and run a simple command like

 New-Employee (Import-Csv usersToCreate.csv)

to import all of the users from that spreadsheet into AD.

We’ll also write another function Get-Employee that can be used to retrieve
employees from an OU. This function allows wildcards to be used when matching the
employee name. It’s also optional, and all employees will be returned by default.
Again, we’ll default the OU to be “ou=HR”.

PS (17) > function Get-Employee (
>> [string] $name='*',
>> [adsi] $ou =
>> "LDAP://localhost:389/ou=HR,dc=NA,dc=fabrikam,dc=com"
>>)
>> {
>> [void] $ou.psbase

AUTHOR’S
NOTE
 APPENDIX B: AD MI N EX A M P L E S 515

>> $ou.psbase.Children | where { $_.name -like $name}
>>
>> }
>>

Now let’s try out these functions. First we’ll use New-Employee to populate the OU
with user objects.

PS (18) > New-Employee $data

Then we’ll use Get-Employee to retrieve the users. We’ll display the name, title,
and homePhone properties for each user.

PS (19) > Get-Employee | Format-Table name,title,homePhone

name title homePhone
---- ----- ---------
{Birdbert} {HR Flunky 1} {}
{Catbert} {HR Boss} {}
{Dogbert} {HR Consultant} {}
{Fishbert} {HR Flunky 3} {}
{Mousebert} {HR Flunky 2} {}

This shows all of the users and their titles. Since we didn’t set the home phone number
property when we created the users, that field shows up as empty.

Of course, this raises the question—how can we update the user properties after
we’ve created the users?

B.8.4 Updating user properties

We’ll create another function to do this called Set-EmployeeProperty. This func-
tion will take a list of employees and a hashtable containing a set of properties to
apply to each employee. As always, we’ll default the OU to be “HR”.

PS (20) > function Set-EmployeeProperty (
>> $employees =
>> $(throw "You must specify at least one employee"),
>> [hashtable] $properties =
>> $(throw "You muset specify some properties"),
>> [ADSI] $ou =
>> "LDAP://localhost:389/ou=HR,dc=NA,dc=fabrikam,dc=com"
>>)
>> {
>> foreach ($employee in $employees)
>> {
>> if ($employee -isnot [ADSI])
>> {
>> $employee = get-employee $employee $ou
>> }
>>
>> foreach ($property in $properties.Keys)
>> {
>> $employee.Put($property, $properties[$property])
516 APPENDIX B: AD MI N EX A M P L E S

>> }
>> $employee.SetInfo()
>> }
>> }
>>

Unlike the New-Employee function, this time we’re requiring the properties object
be a hashtable because we’re going to use the Keys property to get the list of proper-
ties to set on the user object. (This is similar to the Form function that we saw back in
chapter 11.) We’re also using the Get-Employee function to retrieve the user objects
to set.

Now let’s use this function to set the title and homePhone properties on two
of the users in this OU.

PS (21) > Set-EmployeeProperty dogbert,fishbert @{
>> title="Supreme Commander"
>> homePhone = "5551212"
>> }
>>

And verify the changes using the Get-Employee function.

PS (22) > Get-Employee | ft name,title,homePhone

name title homePhone
---- ----- ---------
{Birdbert} {HR Flunky 1} {}
{Catbert} {HR Boss} {}
{Dogbert} {Supreme Commander} {5551212}
{Fishbert} {Supreme Commander} {5551212}
{Mousebert} {HR Flunky 2} {}

We can see that the titles for the specified objects have been updated and the phone
numbers for those users are now set.

B.8.5 Removing users

The last thing to do is figure out how to remove a user. Again, we’ll write a function
to do this called Remove-Employee.

PS (23) > function Remove-Employee (
>> $employees =
>> $(throw "You must specify at least one employee"),
>> [ADSI] $ou =
>> "LDAP://localhost:389/ou=HR,dc=NA,dc=fabrikam,dc=com"
>>)
>> {
>> foreach ($employee in $employees)
>> {
>> if ($employee -isnot [ADSI])
>> {
>> $employee = get-employee $employee $ou
 APPENDIX B: AD MI N EX A M P L E S 517

5

>> }
>>
>> [void] $employee.psbase
>> $employee.psbase.DeleteTree()
>> }
>> }
>>

Now use it remove a couple of users:

PS (24) > remove-employee fishbert,mousebert

And verify that they have been removed.

PS (25) > get-employee

distinguishedName

{CN=Birdbert,OU=HR,DC=NA,DC=fabrikam,DC=com}
{CN=Catbert,OU=HR,DC=NA,DC=fabrikam,DC=com}
{CN=Dogbert,OU=HR,DC=NA,DC=fabrikam,DC=com}

As we can see, with very little effort, it’s possible to significantly automate tasks
involving Active Directory by using PowerShell.

B.9 JOINING TWO SETS OF DATA

PowerShell cmdlets return collections of data. In many ways, these collections are like
“data tables”. Sometimes we need to combine fields from two collections to produce a
new object that includes properties from objects from each of the collections. In
effect, what we need to do is execute a “join” across the two datasets.

A real-world scenario where this occurred was a customer who needed to export a
list of mailbox users from an Exchange server to a CSV file, but also needed to merge
in some additional data about each user that was stored in a separate CSV file.

While PowerShell V1 doesn’t have built-in tools to do this, it’s easy to do using
hashtables. Here’s the basic solution. Get the first set of data into a hashtable indexed
by the “primary key” property. Then traverse the second set, adding in the additional
properties extracted from the hashtable. (Or create new objects and add properties
from both sets.)

Here’s an example showing how to do this. It merges properties from collections
of Process and ServiceController objects into a single object, and then exports
the joined result as a CSV file:
18 APPENDIX B: AD MI N EX A M P L E S

get-process | foreach {$processes = @{}} {
 $processes[$_.processname] = $_}
get-service |
 where {$_.Status -match "running" –and
 $_.ServiceType -eq "Win32OwnProcess" } |
 foreach {
 new-object psobject |
 add-member -pass NoteProperty Name $_.Name |
 add-member -pass NoteProperty PID $processes[$_.Name].Id |
 add-member -pass NoteProperty WS $processes[$_.Name].WS |
 add-member -pass NoteProperty Description $_.DisplayName |
 add-member -pass NoteProperty FileName `
 $processes[$_.Name].MainModule.FileName
 } |
 export-csv -notype ./service_data.csv

Get all of the process data into a hashtable indexed by process name. Then get the
ServiceController objects for all of the services that are running in their own
processes. Build up a new object , extracting fields from service objects and, using
the service name to index into the process data hashtable, add the additional informa-
tion from the process objects , then export this information to a CSV file . Note
that the -notype parameter is used with the Export-Csv command—the synthetic
object doesn’t really have a type, so there’s no point in including that information.

We can see that this is actually a simple example, and by simply replacing the data
sources (the cmdlets) and the keys (the names of the properties), this technique can
be used to do an arbitrary join between tow collections of data.

Listing B.6 Get-ProcessService Data.ps1 script

B Get process
data

C Get service
data

Create new objectD

EAdd
members

Export as CSV fileF

B
C

D

E F
 APPENDIX B: AD MI N EX A M P L E S 519

The PowerShell grammar

A P P E N D I X C
One way to learn a new language is to look at its grammar. This appendix presents
the PowerShell grammar annotated with notes and examples to help explain what’s
happening.

PowerShell is parsed using an augmented recursive descent parser. The augmenta-
tions are needed to deal with some of the complexities in tokenizing the PowerShell
language. This topic is discussed in more detail in chapter 2.

The complete parser is composed of a set of parsing rules and tokenizing rules.
These parsing and tokenization rules are what we’re covering in this appendix. These
rules can be separated into five layers:

1 Statement list: the rules for parsing a basic statement list and a statement block.
2 Statements: various kinds of statements in the language.

3 Expressions

4 Values

5 Tokenizer rules

In the following sections, we’ll expand on each of these topics.

C.1 STATEMENT LIST

<statementBlockRule> =
 '{' <statementListRule> '}'

<statementListRule> =
 <statementRule> [<statementSeparatorToken> <statementRule>]*
520

C.2 STATEMENT

<statementRule> =
 <ifStatementRule> |
 <switchStatementRule> |
 <foreachStatementRule> |
 <forWhileStatementRule> |
 <doWhileStatementRule> |

 <functionDeclarationRule> |
 <parameterDeclarationRule> |
 <flowControlStatementRule> |
 <trapStatementRule> |
 <finallyStatementRule> |
 <pipelineRule>

C.2.1 Pipeline

<pipelineRule> =
 <assignmentStatement> | <firstPipelineElement> ['|' <cmdletCall>]*

<assignmentStatementRule> =
 <lvalueExpression> <AssignmentOperatorToken> <pipelineRule>

<lvalueExpression> =
 <lvalue> [? |? <lvalue>]*

<lvalue> =
 <simpleLvalue> <propertyOrArrayReferenceOperator>*

<simpleLvalue> =
 <AttributeSpecificationToken>* <variableToken>

<firstPipelineElement> =
 <expressionRule> | <cmdletCall>

<cmdletCall> =
 ['&' | '.' | <empty>] [<name> | <expressionRule>]
 [<parameterToken> | <parameterArgumentToken> |
 <postfixOperatorRule> | <redirectionRule>]*

<redirectionRule> =
 <redirectionOperatorToken> <propertyOrArrayReferenceRule>

Notes:
Here are examples showing what pipelines may look like:

 get-childitem -recurse -filter *.ps1 | sort name
 (2+3),3,4 | sort

 & "c:\a path\with spaces.ps1" | % { $_.length }
 get-childitem | sort-object > c:/tmp/junk.txt
 APPENDIX C: TH E POWERSH E L L GRAMMAR 521

This rule also handles parsing assignment expressions to allow things such as

 $a = dir | sort length

to parse properly.

C.2.2 The if statement

<ifStatementRule> =
 'if' '(' <pipelineRule> ')' <statementBlockRule> [
 'elseif' '(' <pipelineRule> ')' <statementBlockRule>]*
 ['else' <statementBlockRule>]{0|1}

Notes:
The if statement is the basic conditional in Powershell. An example of an if state-
ment is

if ($x -gt 100)
{
 "x is greater than 100"
}
elseif ($x -gt 50)
{
 "x is greater than 50"
}
else
{
 "x is less than 50"
}

In the PowerShell if statement, braces are required around the bodies of the state-
ments even when the body is a single line. Also, the elseif token is a single word
with no spaces. An if statement may return one or more values when used in a sub-
expression. For example:

 $a = $(if ($x –gt 100) { 100 } else { $x })

will constrain the value of $x assigned to $a to be no larger than 100.

C.2.3 The switch statement

<switchStatementRule> =
 'switch' ['-regex' | '-wildcard' | '-exact']{0 |1}
 ['-casesensitive']{0|1}
 ['-file' <propertyOrArrayReferenceRule> |
 '(' <pipelineRule> ')']
 '{' [
 ['default' | <ParameterArgumentToken> |
 <propertyOrArrayReferenceRule> | <statementBlockRule>]
 <statementBlockRule>]+ '}'
522 APPENDIX C: TH E POWERSH E L L G R A M M A R

Notes:
The switch statement allows you to select alternatives based on a set of clauses. It
combines features of both the conditional and looping constructs. An example of a
switch statement looks like

switch -regex -casesensitive (get-childitem | sort length)
{
 "^5" {"length for $_ started with 5" ; continue}
 { $_.length > 20000 } {"length of $_ is greater than 20000"}
 default {"Didn't match anything else..."}
}

There can only be one default clause in a switch statement

C.2.4 The foreach statement

<foreachStatementRule> =
 <LoopLabelToken>{0 |1} 'foreach' '(' <variableToken>
 'in' <pipelineRule> ')' <statementBlockRule>

Notes:
The foreach statement loops over an enumerable collection. An example of a
foreach statement is:

 foreach ($i in get-childitem | sort-object length)
 {
 $i
 $sum += $i.length
 }

Also note that there is a Foreach-Object cmdlet that can be used to process objects
one element at a time. While this cmdlet is similar to the foreach statement, it is not
part of the language.

C.2.5 The for and while statements

<forWhileStatementRule> =
 <LoopLabelToken>{0 |1} 'while' '(' <pipelineRule> ')'
 <statementBlockRule> |
 <LoopLabelToken>{0 |1} 'for' '(' <pipelineRule>{0 |1} ';'
 <pipelineRule>{0 |1} ';' <pipelineRule>{0 |1} ')'
 <statementBlockRule>

Notes:
A while statement looks like

 while ($i -lt 100)
 {
 echo i is $i
 $i += 1
 }
 APPENDIX C: TH E POWERSH E L L GRAMMAR 523

A for statement looks like

 for ($i=0; $i -lt 10; $i += 1)
 {
 echo i is $i
 }

C.2.6 The do/while and do/until statements

<doWhileStatementRule> =
 <LoopLabelToken>{0 |1} 'do' <statementBlockRule> ['while' | 'until']
 '('<pipelineRule> ')'

Notes:
Here is an example of a do/while statement:

 do
 {
 write-host $i
 $i += 1
 } while ($i -lt 100)

And an example of a do/until statement:

 do
 {
 write-host $i
 $i += 1
 } until ($i -ge 100)

C.2.7 The trap statement

<trapStatementRule> =
 'trap' <AttributeSpecificationToken>{0 |1} <statementBlockRule>

Notes:
A trap statement looks like

 trap { ... }

or

 trap [system.nullreferenceexception] { ... }

A trap statement is scoped to the statement list that contains it. See chapter 9.

C.2.8 The finally statement

<finallyStatementRule> =
 'finally' <statementBlockRule>

Notes:
A finally statement looks like

 finally { ... }
524 APPENDIX C: TH E POWERSH E L L G R A M M A R

This statement is not implemented in version 1 of PowerShell and will result in a not-
implemented compile-time error.

C.2.9 Flow control statements

<flowControlStatementRule> =
 ['break' | 'continue']
 [<propertyNameToken> | <propertyOrArrayReferenceRule>]{0 |1} |
 'return' <pipelineRule>

Notes:
Flow control statements alter the normal flow of execution in PowerShell. Here are
examples of what flow control statements look like:

 break
 break label
 break $labelArray[2].name
 return
 return 13
 return get-content | sort | pick-object -head 10

C.2.10 Function declarations

<functionDeclarationRule> =
 <FunctionDeclarationToken> <ParameterArgumentToken>
 ['(' <parameterDeclarationExpressionRule> ')']
 <cmdletBodyRule>

<cmdletBodyRule> =
 '{' ['(' <parameterDeclarationExpressionRule> ')'] (
 ['begin' <statementBlock> |
 'process' <statementBlock> |
 'end' <statementBlock>]* |
 <statementList> '}'

Notes:
Function declarations in PowerShell take a variety of forms, from a simple function
with an implicit argument collection to a full cmdlet specification. A function defini-
tion in its simplest form looks like

 function foo { ... }

or

 function foo ($a1, $a2) { ... }

A function that acts like a full cmdlet looks like

 function foo ($a1, $a2) { begin { … } process { … } end { … } }

Parameters can alternatively be specified using the param statement:

 function foo ($a1, $a2) { begin { … } process { … } end { … } }
 APPENDIX C: TH E POWERSH E L L GRAMMAR 525

Finally, a filter may be specified as

 filter foo ($a1, $a2) { … }

which is equivalent to

 function ($a1, $a2) { process { … } }

In all cases, the parameter specification is optional.

C.2.11 Parameter declarations

<parameterDeclarationRule> =
 <ParameterDeclarationToken> '('
 <parameterDeclarationExpressionRule> ')'

<parameterDeclarationExpressionRule> =
 <parameterWithIntializer>
 [<CommaToken> <parameterWithIntializer>]*

<parameterWithIntializer> =
 <simpleLvalue> ['=' <expressionRule>]

Notes:
This rule captures the parameter declaration notation in PowerShell. Parameter decla-
rations allow for option type qualifiers and initializers to be specified for each param-
eter. Multiple type qualifiers can be specified to allow for more complex argument
transformations. Argument initializers can contain subexpressions, allowing for arbi-
trary initialization including pipelines. Parameter declarations look like:

 param ($x, $y)
 param ([int] $a, $b = 13)
 param ([int][char] $a = “x”,
 [System.IO.FileInfo[]] $files = $(dir *.ps1 | sort length))

C.3 EXPRESSION

<expressionRule> = <logicalExpressionRule>

<logicalExpressionRule> =
 <bitwiseExpressionRule>
 [<LogicalOperatorToken> <bitwiseExpressionRule>]*

<bitwiseExpressionRule> =
<comparisonExpressionRule> [<BitwiseOperatorToken>
 comparisonExpressionRule>]*

<comparisonExpressionRule> =
 <addExpressionRule>
 [<ComparisonOperatorToken> <addExpressionRule>]*

<addExpressionRule> =
 <multiplyExpressionRule>
526 APPENDIX C: TH E POWERSH E L L G R A M M A R

 [<AdditionOperatorToken> <multiplyExpressionRule>]*

<multiplyExpressionRule> =
 <formatExpressionRule>
 [<MultiplyOperatorToken> <formatExpressionRule>]

<formatExpressionRule> =
 <rangeExpressionRule>

 [<FormatOperatorToken> <rangeExpressionRule>]*

<rangeExpressionRule> =
 <arrayLiteralRule> [<RangeOperatorToken> <arrayLiteralRule>]*

<arrayLiteralRule> =
 <postfixOperatorRule> [<CommaToken> <postfixOperatorRule>]*

<postfixOperatorRule> =
 <lvalueExpression> <PrePostfixOperatorToken> |
 <propertyOrArrayReferenceRule>

<propertyOrArrayReferenceRule> =
 <valueRule> <propertyOrArrayReferenceOperator>*

<propertyOrArrayReferenceOperator> =
 '[' <expressionRule> ']'] |
 '.' [<PropertyNameToken> <parseCallRule>{0|1} | valueRule>]

<parseCallRule> = '(' <arrayLiteralRule> ')'

C.4 VALUE

<valueRule> =
 '(' <assignmentStatementRule> ')' |
 '$(' <statementListRule> ')' |
 '@(' <statementListRule> ')' |
 <cmdletBodyRule> |
 '@{' <hashLiteralRule> '}' |
 <unaryOperatorToken> <propertyOrArrayReferenceRule> |
 <AttributeSpecificationToken> <propertyOrArrayReferenceRule> |
 <AttributeSpecificationToken> |
 <PrePostfixOperatorToken> <lvalue> |
 <NumberToken> |
 <LiteralStringToken> |
 <ExpandableStringToken> |
 <variableToken>

<hashLiteralRule> =
 <keyExpression> '=' <pipelineRule> [<statementSeparatorToken>
 <hashLiteralRule>]*
 APPENDIX C: TH E POWERSH E L L GRAMMAR 527

Notes:
The valueRule is used to process simple values where a simple value may actually
include things such as hash literals or scriptblocks. This rule also handles the process-
ing of subexpressions.

C.5 TOKENIZER RULES

<ComparisonOperatorToken> =
 "-eq" | "-ne" | "-ge" | "-gt" | "-lt" | "-le" |
 "-ieq" | "-ine" | "-ige" | "-igt" | "-ilt" | "-ile" |
 "-ceq" | "-cne" | "-cge" | "-cgt" | "-clt" | "-cle" |
 "-like" | "-notlike" | "-match" | "-notmatch" |
 "-ilike" | "-inotlike" | "-imatch" | "-inotmatch" |
 "-clike" | "-cnotlike" | "-cmatch" | "-cnotmatch" |
 "-contains" | "-notcontains" |
 "-icontains" | "-inotcontains" |
 "-ccontains" | "-cnotcontains" |
 "-isnot" | "-is" | "-as" |
 "-replace" | "-ireplace" | "-creplace"

<AssignmentOperatorToken> = "=" | "+=" | "-=" | "*=" | "/=" | "%="

<LogicalOperatorToken> = "-and" | "-or"

<BitwiseOperatorToken> = "-band" | "-bor"

<RedirectionOperatorToken> =
 "2>&1" | ">>" | ">" | "<<" | "<" | ">|" | "2>" | "2>>" | "1>>"

<FunctionDeclarationToken> = "function" | "filter"

An expandable string does variable expansion inside them.

<ExpandableStringToken> = ".*"

A constant string doesn’t do expansions; also escape sequences are not processed.

<StringToken> = '.*'

Variables look like $a123 or ${abcd} - escaping is required to embed { or } in a vari-
able name.

<VariableToken> = \$[:alnum:]+ | \${.+}

The ParameterToken rule is used to match cmdlet parameters such as -foo or -
boolProp: <value>. Note that this rule will also match --foobar, so this rule has
to be checked before the --token rule.

<ParameterToken> = -[:letter:]+[:]{0 |1}

<CallArguementSeparatorToken> = ' |'

<CommaToken> = ' |'
528 APPENDIX C: TH E POWERSH E L L G R A M M A R

<MinusMinusToken> = '--'

<RangeOperatorToken> = '..'

Tokenizing numbers is affected by what character follows them, subject to the parsing
mode.

<NumberToken> = C# number pattern...

<ReferenceOperatorToken> = "." | "::" | "["

The following token rule is used to parse command argument tokens. It is only active
after reading the command name itself. The goal is to allow any character in a com-
mand argument other than statement delimiters (newline, semicolon, or close brace),
expression delimiters (close parenthesis, the pipe sysmbol), or whitespace. It’s a varia-
tion of a string token (escaping works), but the token is delimited by any of a set of
characters. The regular expression shown does not accurately capture the full details of
how this works.

<ParameterArgumentToken> = [^-($0-9].*[^ \t]

<UnaryOperatorToken> = "!" | "-not" | "+" | "-" | "-bnot" | <attributeSpeci-
ficationToken>

<FormatOperatorToken> = '-f'

<LoopLabelToken> = [:letter:][:alnum:]*:

<ParameterToken> = "param"

<PrePostfixOperatorToken> = '++' | <MinusMinusToken>

<MultiplyOperatorToken> = '*' | '/' | '%'

<AdditionOperatorToken> = '+' | '-' | emDash | enDash | horizontalBar

The attribute specification looks like [int] or [system.int32] and will also even-
tually allow the full range of PowerShell metadata.

<AttributeSpecificationToken> = \[..*\]

The following tokens make up the end-of-line token class. The tokens && and || are
not parsed but will result in a not-implemented error in version 1 of PowerShell.

<StatementSeparatorToken> = ';' | '&&' | '||' | <end-of-line>

A cmdlet name can be any sequence of characters terminated by whitespace that
doesn’t start with the one of the following characters. This basically matches a cmdlet
that could be a native mode cmdlet or an executable name: foo/bar, foo/bar.exe,
foo\bar.exe, foo.bar.exe, c:\foo\bar, and so on are all valid.

<CmdletNameToken> = [^$0-9(@"'][^ \t]*
 APPENDIX C: TH E POWERSH E L L GRAMMAR 529

index
Symbols

$? variable 259–260, 418
$_ variable 163–164, 170, 201

in trap block 266
$args 179, 181, 185
$error variable 256
$error[0] 257
$ErrorActionPreference

variable 262, 264, 266
$ExecutionContext variable 246
$false variable 106, 141
$foreach variable 157, 200, 330
$host members 270
$host variable 270, 279
$host, RawUI 271
$input variable 199, 201
$LASTEXITCODE

variable 260
$matches 164
$matches automatic

variable 109
$MaximumErrorCount

variable 256
$MyInvocation variable 281
$NestedPromptLevel

variable 278
$null 158, 186, 265

variable 117, 141, 263, 302
$OFS variable 81, 178, 228, 316
$PROFILE variable 482
$PSHOME 48

$PSHome 244
$PSHome/types.ps1xml configu-

ration file 342
$PWD shell variable 357
$switch variable 168, 200, 330
$this member 229
$this variable 228
$true variable 141
+= operator 302
< operator 139
=and operator 113
> operator 138
>> operator 138

Numerics

1/$null expression 257
2> operator 138
2>&1 operator 139
2>> operator 138

A

about_Assignment_operators
help text 302

access remote event logs,
example 508

accessible 156
accessing COM objects 399
accidental

code injections 248
execution 206

accumulate 156, 213

acronyms 26
action 333, 379
activator APIs 352
Active Directory (AD) 512, 515

schema 513
Active Directory Application

Mode. See ADAM
active directory domain

information 499
Active Directory Service Inter-

face. See ADSI
ActiveScript

engine 415
language 416

AD. See Active Directory
ADAM, Application Mode 512
adaptation 223

existing member 236
extending objects 223

adaptation layer, COM 394
adapter 59
add 89

children to a node 324
elements to an XML
document 323
extending instances 224
members 223
new language elements 250
property 226
ScriptMethod 227
XML attributes 324
531

addExpressionRule, PowerShell
grammar 526

addition 92
addition operator, hashtables 92
AdditionOperatorToken, Power-

Shell grammar 529
Add-Member 233

cmdlet 224, 235
admin tasks 436
ADO 58
ADSI 58, 437

object adapter 513
Type Shortcut 513

algorithm 193
binding 289
comparison 104
compression 425
hash 441, 453
Secure Hash 456

alias 34, 76
property 225
provider 309

aliased member 226
AliasProperty 225
AllSigned execution policy,

definition 451
alternation operator, regex 304
anatomy 27
Anchor property, Winforms 376
animated agent feature 412
animations 415
anonymous

filter 202
functions 220

APIs 7
activator 352
byte-oriented 369
GDI+ 388
host 270
interoperation with 54
surfacing management 422

AppActivate() method,
WScript.Shell 404

append 140
application architecture 379

application developers 283
architecture 253
arguments 45, 133, 169,

179, 188
arithmetic 18

calculations
cmd.exe 479

expressions 304
operator methods 96

array 71, 131, 194–195
catenation 89
indexing 71, 318
literals 71
multiplication 93
of indexes 132
operators 89
Perl vs PowerShell 493
subexpression 119

Array class 243
array indexing, VBScript vs

PowerShell 497
array of characters 245

converting to string 228
string as 227

ArrayList 197
arrayLiteralRule, PowerShell

grammar 527
-as operator 117
ASCII 141

encoding 318
files 314

ASCII encoding 318
AsSecureString parameter 466
assemblies 345
assets, definition 445
assignable elements 99
assignment 69, 91

expression syntax 97
expressions

as value expressions 100
operators 96, 144

AssignmentOperatorToken,
PowerShell grammar 528

assignmentStatementRule,
PowerShell grammar 521

asynchronous event
handling 369

attack, definition 444
AttributeSpecificationToken,

PowerShell grammar 529
authentication, definition 446
authorization, definition 446
AutoIT tool 405
automate system administration

tasks, security 465
automate, Active Directory 518
automatic type conversion

117, 285
automatic variable 170

$this in scriptblocks 228
definition 246

automating an application 396
Automation Model 396
automation tool 251
AWK 170

command 489
language 490

B

backquote 39
backslash 41
backtick 39
base class 233
base member, on hashtable 302
bash 4
basic dialog 391
basic error handling 293
basic string processing 304
begin clause 301
begin keyword 202
BeginInvoke() method 350
begin-processing 46
best practice, security 467
binary data 307
binary files, working with 313
binary operator 137, 171
bind from pipeline 288
binder 28
532 INDEX

binding
objects, data and
methods 222
process 288

bitmap files 315
bitwise operators 113
bitwiseExpressionRule, Power-

Shell grammar 526
BitwiseOperatorToken, Power-

Shell grammar 528
blacklisting, definition 446
block of code 265
blogger 437
.BMP file 316
boilerplate code 376
[bool] 85
Boolean 189
bottom-tested 152
bound 186, 289
Bourne shell family 488
branching 161
break 159–160, 162, 166

keyword 266
breakpoint 279–280

command 280
browser

cache 309
window 405

building
code 245
graphical applications 371
menus 379
objects in PowerShell 222

built-in commands 31
cmd.exe 481

button control 373
bypass

adaptation layer 325
type adapter 424

by-reference 73

C

C# 149, 155, 197, 437
considerations 353
typeof() operator 136

cache, temporary Internet
files 310

caching security 454
calculated 17
calculated field 232
calculations 56
calculator buttons 384
calculator process 432
call operator 248, 264

"&" 216
scriptblocks 218

call stack 282
CallArguementSeparatorToken,

PowerShell grammar 528
Calling functions 183
Cancel button 374
candidate 83
canonical aliases 306
capture errors 257, 261
capturing

error objects 253, 259
error record 253
errors 256–257

cartoon characters 412
cascading consequences 472
-case option 163, 165
case-insensitive 17, 92, 148
case-sensitive 103, 164
CaseSensitive parameter 320
cast notation 75

with variables 142
casting 116

string to array of
characters 228
to void 119
to XML 286

casual scripting 268
catch 268
categories of COM object 417
-ceq operator 101
Certificate Export Wizard is

OK 463
certificate file 457
Certificate Manager tool

(Certmgr.exe), 462

Certificate snap-in 457
chained 80
char array 351
character encodings 313
characteristics 20
checksum function 319
child process 308
Church, Alonzo, lambda

notation 216
CIM. See Common Instrument

Model
class

definition 238
keyword, implementing 241
root 394

class.ps1 238
Clear() method, eventlog 508
clipboard 411
CLIXML format 342
clobbering output 141
Close() method 353
closing tag 330
cmd.exe 4, 144, 260, 306, 314

/c option 260
basic navigation
commands 477
calling from PowerShell 487
getting exit code 210
security 441

cmdlet 27–28, 30
coverage 393
stops 264

cmdletBodyRule, PowerShell
grammar 525

cmdletCall, PowerShell
grammar 521

CmdletNameToken, PowerShell
grammar 529

code
execution 445
injection 448, 472
injection attacks 248

codecs installed 425
CodeMethod 225
CodeObject 427
INDEX 533

CodeProperty 225
code-signing 456
coding exercise 442
collection 86, 90, 158, 161,

175, 200, 257
Command Information 218

collection comparisons 105
left operand 105
polymorphic collections 105
right operand 105

collection of commands,
snap-in 292

collection of lines 300
collection of objects, WMI 433
collection of phrases, array

literals 414
Collections 105

Count property 106
colon, in variable names 143
colors, tracing statement 272
column styles 379
ColumnCount property 380
COM 58

adaptation 393
adapter issues and
limitations 417
collection 399
objects, issues 415

comma operator 145
command 157, 177

arguments, scriptbocks 216
completion 16
discovery 216
elements 334
history 6
information 221
line 203, 255, 269, 288
mode 41
name element 333
name resolution 217
type 218

CommandInfo 217
FunctionInfo subclass 221

commas 179

CommaToken, PowerShell
grammar 528

comment block 453
Common Instrumentation

Model (CIM) 393, 422
common scriptblock 383
ComObject parameter 393
comparison operator

case sensitivity 101
design rational 102
left-hand rule 102

comparisonExpressionRule,
PowerShell grammar 526

ComparisonOperatorToken,
PowerShell grammar 528

compile time 245
compiled script 247
compile-time error, type

conversion 142
compiling scriptblocks 245
complete statement 43
Component Object Model. See

COM
compound assignment

operators 96
computer security 441, 475
ComWrappers.ps1xml types

extension file 420
concatenate 62, 180

collection of files 313
strings 497

condition 152, 154
condition part 150
conditional matches 165
conditional statement 148
console 139, 253
console-based 34
constant expression folding 257
constant variables 141
constructor arguments 351
constructors 84
-contains operator 106

performance advantages 107
continue 159–160, 166
Continue, Error preference 262

control panel
applet 402
appwiz.cpl 403
desk.cpl 402

control structures 215
control transfers 267
Controls member 373
convenience aliases 35
conversion 79, 90
conversion error 143
converted 29, 184
ConvertFrom-SecureString

cmdlet 467
converting

an existing VBScript 425
arrays to strings 316

ConvertTo-Html cmdlet 369
ConvertTo-SecureString

cmdlet 467
convoluted 159
copying 90

files 477
Core Cmdlets

Clear-Item 306
Copy-Item 306
Get-Content 307
Get-Location 306
Mkdir 307
Move-Item 306
New-Item 306
Remove-Item 306
Rename-Item 306
Set-Content 307
Set-Item 306
Set-Location 306

Count property 179
counting loop 153
create

drives 307
eventlog 510
generic collections 391
generic instance 358
instances 350
objects 233, 237
534 INDEX

create (continued)
user object Active
Directory 513
variable 142

Create()
Active Directory 513
WMI 432

CreateElement() 323
CreateNavigator() 336
CreateObject(), VBScript 496
CreateProcess() API,

Win32 450, 471
credentials, WMI 422
critical operations 261
cryptography 441
currency symbol 138
current

directory 156
execution policy 451
pipeline object 337
scope 209, 280
state 400
working directory 88

Current property 200
CurrentDirectory static

method 355
custom objects, creating 215

D

Danom virus 442
data abstraction 237
data binding 385
Data General 8
data structure 145

example 98
data tables 518
datagrid control 385
DataGrid, data binding 387
date object 426
[datetime] 104
dayofweek property 227
debug 196

debugger language 277
debugger operations 277
debugging 48, 213, 271, 293

debugging capabilities 271
debugging complex
scripts 281
debugging feature 275
debugging messages 270, 279
debugging PowerShell
scripts 270
debugging technique 279
debugging tool 281
debugging, tracing, and log-
ging features 293

DEBUG tag 272
declare 56
declare parameters 181
decrement operator 118
default aliases 477
default clause 162
default state parameters 288
define

class 238
functions 220, 273
types 239

definitions, command
information 218

DeleteTree() method, Active
Directory 518

deleting
files 477
function 221
variable 277

-delimiter parameter 317–318
denial of service, definition 445
depth parameter 342
descendent

XML element 338
XML Nodes 322

description property,
defining 227

design decision, contentious
issues 101

destructive 79
device, WMI 434
diagnostics

capabilities 294
error 257

features 293
tool 291
tracing and logging 252

dialog box 456
DialogResult property,

Winforms 376
digital signature 454
DirectoryInfo 233

object 236
discard

empty array elements 300
error messages 263
output 140

distinguishedName property,
Active Directory 518

distributed 8
Distributed Management Task

Force (DMTF) 422
division 57

by zero 257
Dock property 373
dollar sign 143
domain 112

information 499
domain-specific languages 237
Don't Panic 3
doskey

macro substitution 486
tool 485
utility, powershell 486

dot 135
operator 133
script 211
sourcing 211

dotting a script or function 210
double 57
double quotes 206, 246
double-click 449
double-colon operator, accessing

static members 146
double-quotes 54, 61
do-while 152
doWhileStatementRule, Power-

Shell grammar 524
INDEX 535

Drawing assembly 376
Drawing function 379
drawing objects 390

brush 390
rectangle 390

drive 204
Dump-Doc function 329
dumping

errors 258
script call stack 281

dynamic 56
dynamic language 215, 222, 237

environments 277
security 447

dynamic link library (DLL) 346
dynamic parameters 288
dynamic scope 190, 192, 213,

239, 474, 495
dynamically constructing

instances 352

E

-ea parameter 262
Eclipse minicomputer 8
ECMAScript (JavaScript),

JScript 416
edit.com 34
elastic 34

syntax 180
element 69, 174

attributes 330
nodes 333
type of the collection 288

Elevation of Privilege,
definition 445

elseif 149
clauses 149
condition 148
keywords 149–150
token 522

EMACS 108
employee Active Directory 514
empty array 158

empty PSObject 240
Enable strong protection box,

Certificate Export
Wizard 463

encapsulate 222
-encoding 53
encoding 141

parameter 318
writing binary files 318

-encoding parameter 141
encryption key, security 467
end keyword 202
end scriptblock 338
end-processing 46
EndProcessing clause 289
entered interactively 257
EnterNestedPrompt()

method 279
$host 279

enumerable 158
enumerable collection array 90
enumeration 300
enumerator 157
env namespace 143
environment variables 143, 146

cmd.exe 478
-eq 101, 104
error

behavior 262
catching 241
conditions 252
handling 252–253
handling mechanisms 293
message 184, 206, 263
object references 259
objects 139, 196, 252, 255,
258–259, 268
records 253, 266
redirection 138

formatting 139
stream 196
text 253
variable 258

error action policy 268
error action preference 262–263

Error Record Property
CategoryInfo 254
ErrorDetails 254
Exception 254
FullyQualifiedErrorId 254
InvocationInfo 254
TargetObject 254

erroraction parameter 262–264
erroractionpreference

parameter 264
error-handing 268
ERRORLEVEL 210
ErrorRecord 252
ErrorVariable. parameter 257
escape 40

processing 311
removal

by the interpreter 311
in the provider 311

sequence 41
wildcards 310

ev parameter 259
evaluates 173
event handler 373, 390
event log entries 292
event records 291
Event Viewer tool 291
eventlog entry type 292
EventLog object 507–508
Events 371
exact matches 165
examine the error 257
exception 255, 265–266, 294

C# and VB.Net 252
object 268
terminating error 265

Exchange 518
Management console 293
team 293

executables 307
execute 218
executing code at runtime 245
execution path 475
execution policy 206, 459,

464, 475
536 INDEX

execution resumed after an
exception 267

execution stopped error 263
ExecutionPolicy property 451
exit

code 260
function 282
keyword 209
nested prompt 279
scripts 209
statement 209, 279
with code 0 260

expandable 61
ExpandableStringToken, Power-

Shell grammar 528
expanded 16, 40
ExpandString() method 247
Explicit Cast Operator 84
explore objects 233
Explore() method, Shell 397
Explorer 6
exploring PSObject

metaprogramming 233
export a certificate 462
Export-CLIXml 343
Export-CliXml cmdlet 339
Export-Window function 401
expression member with Select-

Object 232
expression mode 41
expressionRule, PowerShell

grammar 526
expressions 17, 145, 175, 257
extend 223

objects 233
runtime 250
type system 48

eXtensible Markup Language.
See XML

extension 32, 223
external 177
external commands 260, 437
extra parameters 390

extracting information 298
multiple XML elements 337
XPath 336

F

-f operator 80, 137
factored commands 477
factories 422
fatal exception 369
Fibonacci example 97
fields 50
file 18
File Association 449
file names, matching 107
file not found error 257
file, process whole 300
FileInfo type 133
FileInformation 156
FileLog parameter 291
files, drives and navigation 305
filesystem provider 144
FileVersionInfo property 492
filter 201, 220
filtering output 253
finallyStatementRule, Power-

Shell grammar 524
findstr command 319, 482
fine control 264
finger-memory 481
first error 264
firstPipelineElement, Power-

Shell grammar 521
fl command 35
flow control 18, 23, 147,

149, 176
adding new 238

flowControlStatementRule,
PowerShell grammar 525

flush the changes 434
WMI 435

fmtData function 409
for loop 153
for statement, cmd.exe 482
for tokens=, cmd.exe 483

-force parameter 248, 468
foreach 171, 176
foreach keyword 155
foreach loop 155, 272
foreach statement 153, 155, 157
foreach-object 170
foreach-object cmdlet 21, 130,

155–156, 170–171, 202,
215–216, 220, 301, 337

foreachStatementRule, Power-
Shell grammar 523

forensic tools 465
Form function 379
Form.Activate 374
formal arguments 186
formal parameters 181,

185–186
format operator -f 80, 137, 146
format specifier 137
format string 137
formatExpressionRule, Power-

Shell grammar 527
format-list cmdlet 48, 427
FormatOperatorToken, Power-

Shell grammar 529
format-table cmdlet

48, 231, 337
formatted display 303
formatter 50
formatting 48

and output subsystem 303
and output system 137
strings 137

forWhileStatementRule, Power-
Shell grammar 523

foundation 54
fragments of script code 264
freespace 22
full debugging 276
full tracing 273
full-fledged cmdlets 213
FullName 65, 235, 347
fullname 91
Fulton, Scott 442
INDEX 537

function body 178
function calls 273
function cmdlet 220
function definition 217, 219

changing 221
entry 205

function drive 204, 213, 248
function keyword 212, 222
function parameter 186, 269
function provider, function

drive 221
function scoped 209
function: drive 220–221
function:/mkdir 204
functionDeclarationRule,

PowerShell grammar 525
FunctionInfo 221
functions 31, 178, 194, 201

drive 306

G

garbage collection 330
GDI (Graphics Device

Interface) 388
generate a script 207
generated an error object 259
generating 157
generic dictionary 359–360
generic type 358

closed generic type 359
open generic type 358

geometry managers 371
get an enumerator 467
get input, $host 271
get WMI objects 422
GetAssemblies() method 349
Get-AuthenticodeSignature

cmdlet, security 460
Get-BatchFile function 484
Get-ChildItem cmdlet 34, 477

command information 217
synthetic properties 223

get-command 34, 217, 455
Get-ComRSS function 407

Get-Content cmdlet 98, 145,
168, 313, 316, 326
syntax 313
working with binary files 317

Get-Credential cmdlet 466, 468
get-date 64, 139, 187
Get-Digg script 408
Get-DomainInfo Script

example 500
Get-Employee function

example 515
GetEnumerator() method 345
Get-EventLog cmdlet 291, 505

limitations 508
Get-ExecutionPolicy

cmdlet 451
get-help cmdlet 141, 334
Get-HotFixes script 505

example 503
Get-Item cmdlet 259, 262, 287
Get-ItemProperty cmdlet 451
GetLength() function,

VBScript 415
Get-MachinesMissingHot-

fix.ps1 Script
example 504, 519

Get-MagicNumber script 316
get-member 221
Get-Member cmdlet 253, 299,

305
COM 396
examining objects 222
static members 223

Get-Members cmdlet 133
Getmembers() method, listing

object members 95
Get-PfxCertificate cmdlet 464
get-process 29, 154
Get-Process cmdlet

in WinForms example 385
WMI 432

get-sched script, example 511
Get-SoftwareFeatures.ps1 script,

example 501
Get-Spelling.ps1 script 409

GetType() method 56
getting an objects type 99

GetTypes() method 349
get-variable cmdlet 282
Get-WmiObject cmdlet

423, 429, 438, 496
Get-XPathNavigator

function 336
gigabytes 65
Global Assembly Cache

(GAC). 348
global context 143
global functions 239
global modifier 193
global scope 246
global variable 191, 193
goto statement 159

cmd.exe 483
grammar 27
graphical programming 249
graphical user interface 293
graphics programming 387
greater than 149
grep command 319, 489
grouping 119

expressions 119
objects 303

Group-Object cmdlet 303
GUID,

System.__ComObject 419

H

handle embedded single
quotes 402

handles 172, 217
resource management 330

hashLiteralRule, PowerShell
grammar 527

hashtable 66, 184, 239
button objects 384
extending 245
keys 301–302
member 302
operators 89
use with Select-Object 232
538 INDEX

help cmdlet-name 307
help topics 319
helper function 239
here-string 60, 63, 207–208

VBSCript 427
Heresy, PowerShell 45
hex digits 90
hex dump function 315
hexadecimal 66, 138, 316
history 487
home directory 402
host APIs 270, 294
host interfaces 271
host version 270
how commands are run, cmd.exe

vs powershell 480
how to load assemblies 391
Howard, Michael 445
HTML 407

document 365
table 370
tags 361

HTTP
GET method 408
protocol 369
request 369, 409
response 365

http://www.dmtf.org 422
DMTF Website 422

I

I/O redirection 140
IComparable 104
IDictionary 66
IEEE Specification 1003.2,

POSIX Shell 8
IEnumerable interface 158, 345
-ieq operator 101
if 23, 148
if Statement 148
ifStatementRule, PowerShell

grammar 522
IList 85

implementation decision, con-
catenation hashtables 92

implicit 103
Implicit Cast Operator 84
import a SecureString 468
Import-CLIXml cmdlet

341, 343
Import-Csv cmdlet, Active

Directory 515
increment operator 62, 118, 152
Increment the loop variable 281
indent level 330
index of command in

pipeline 255
index operation 218
indexes 132
indexing with a variable 132
indirect property name

retrievals 135
infamous clippie 412
information disclosure

attack 449
definition 444

inheritance 243
hierarchy 234

initialize 62, 153
multiple variables 100
parameters 181

initializer 188, 269
initializer expression 187
in-memory buffering 144
inner 160
innermost call 283
InnerText() method 324
input 200
input redirection 139
Input Validation 447
-InputObject 38
Insert() method string 493
inspecting 278
installable software 305
installable, providers 306
installation directory path 244

installed software features,
listing 500

instance 241
creating 239, 242
extending 244

instance members 136
instances, extending 223
[int] type 116
integer 56, 184

expressions 265
truncation 103

integrity 446
intellisense 16
interactive 172
interactive command interpreter,

security 450
interactive commands 429
interactive mode 277
interactively 150
intercept 100
Internet Explorer, COM

Object 405
InternetExplorer.Application.1.

395
interop assembly 418
interop problem 399
interoperate, COM 399
interpreter 28, 148,

189, 249, 272
intervening characters 111
invalid file name, security 448
invocation intrinsics 250
InvocationInfo member 255
InvocationInfo object 282
invoke scriptblocks 215
InvokeCommand 246
Invoke-Display function 414
Invoke-Expression 81, 370

security 447
Invoke-Expression

cmdlet 245–246, 277
evaluating math
expressions 384
security 472
INDEX 539

InvokeMethod() method,
COM 421

Invoke-MSAgent function 415
InvokeScript() method 247
invoking a command

indirectly 217
ipconfig.exe command 450
-is operator 116–117

testing types 226
-isnot operator 116–117
ISO 66
issues with COM 417
Item() parameterized

property 399
ItemNotFoundException 255
iterate 158
iteration 151, 161
Iteration, cmd.exe vs

powershell 482

J

jagged arrays 145
JavaScript 223, 415
join 135, 518
join lines 300
join() method 228
joining strings 136
joining Strings, String.Join

String.Join() method 300
JScript functions 417
JScript language 416
jump 160

K

key available 369
keyboard macros 485
keys 67
keys property 302
key-value 67
keyword 148, 171, 182

adding 239, 243
Kidder, Tracey 8
kilobytes 65
Korn shell 9

L

label, select-object 428
lambda 216
language 54

extending 237
language elements 238
language features 297
launch 33
launch an arbitrary

executable 309
lawn gnome mitigation 445
layout manager 371
LDAP (Light-weight Directory

Access Protocol) 513
leading zeros, numeric

comparison 102
least frequently used word 302
left aligned 138
left operand 95
left-hand rule, operators 90
legitimately signed 462
Leibniz 5
length 145, 167
length property 133
levels of indirection 133
lexical 37, 63

ambiguity with type
literals 136
scoping 190

library of functions 211
Winforms 376

lifetime 190
lightweight 67
-like operator 108, 161
limit, number of errors

recorded 256
link fields 408
LISP 216
list 49
list of colors 390
list of functions, function

drive 220
list of keys 302
list of properties 134
list of property names 134

list of words 301
list option, WMI 423
list parameter 320
ListenerOption parameter

284, 286
listing trace categories 285
LiteralPath parameter 312
little-language technique

237, 384
live objects 507

definition 490
Load() method 348
loading assemblies 379
loading XML Documents 327
LoadWithPartialName()

method 347
local certificate store,

definition 454
local scope for variables,

cmd.exe 480
Local User Administration

dialog 469
local variable 229
localhost 370
logical complement 174
logical disk object 436
logical operators 113
logicalExpressionRule, Power-

Shell grammar 526
LogicalOperatorToken, Power-

Shell grammar 528
logicalpath 308
lookup word definition 405
loop 63, 152, 159, 165

counter 154–155
iteration 272

tracing 274
keyword 237
processing 166
termination 279

looping construct, adding
new 237

LoopLabelToken, PowerShell
grammar 529

lossy serialization 339
540 INDEX

low-level tracing 283, 294
lvalue, PowerShell grammar 521
lvalueExpression, PowerShell

grammar 521

M

macro expansion 487
magic number 316
magnitude 57
MainModule property 492
make a secure 467
MakeCert.exe program 455
MakeGenericType()

method 359–360
malware, definition 442
MAML (Microsoft Assistance

Markup Language)
description element 331, 333
para element 331

management 7
management model 23
management object model 421
Management.EventQuery,

WMI 434
Management.ManagementPath

object, WMI 436
ManagementEventWatcher

object, WMI 434
managing errors 256
mandatory 149, 169
mandatory arguments 188
mandatory path parameter 316
manifest 346
manipulate scriptblocks 222
manipulating code 222
match 167
match group 111
Match object 305
-match operator 109, 161,

164, 304
matched 110, 161
matching parameter 288

matching process 162
matching quote 39
[math], sqrt() 384
MD5 hash algorithm 441
Measure-Object cmdlet 490
megabytes 65
member collection 235

setting the property 236
member types 222, 224
members 158
memory

consumption 256
resource management 330

Menu 379
menu, displaying 363
MenuBar, Internet Explorer 400
MenuItem 379
merging streams in assignment

statements 140
message box 403
metacharacters 312
metacharacters in files 309
metaprogramming 214, 249
method argument commas 299
method call 135, 283

C# vs PowerShell 495
syntax 135

method invocations 135
methods 136, 225
Microsoft Developer

Network 234, 348
Microsoft Exchange 293
Microsoft Management Console

(mmc.exe) 471
Microsoft Office

applications 405
Manipulating with
COM 409

Microsoft security response 442
MinusMinusToken, PowerShell

grammar 529
missing hot fixes 503
mitigation, definition 445

mkdir function 52, 204
MMC (Microsoft Management

Console) 457
Möbius 51
model, definition 444
Model-View Controller, applied

to namespaces 144
modifiers 237
modulus 94
Monad 5
most commonly used word 302
MoveNext() method

157–158, 169
MoveToFirstAttribute()

method 330
MoveToNextAttribute()

method 330
moving files 477
MS agents 438
MSAgent class, COM 405
MSDN 53
MSDN blog site 361
MSDN documentation,

ProgID 394
MS-DOS architects 317
MSH/Cibyz worm 443
MSI file 420
Msxml2.DOMDocument 394
multi-dimensional array

131, 145
multiple assignment

97, 144, 181
example with type
qualifiers 98
Fibonacci example 98

Multiplier 65
multiplyExpressionRule, Power-

Shell grammar 527
multiplying 89
Multiplying numbers 92
MultiplyOperatorToken, Power-

Shell grammar 529
INDEX 541

multi-scope catch 268
multi-threaded apartment

(MTA) mode 417
multivariable assignment

207, 390

N

name member with Select-
Object 232

Name parameter 285
Name property 235
named capture 111
named parameter 182–183, 288
namespace 204

notation variables 143
qualifiers 193

native 32
native commands 28, 260
native date converter 428
n-dimensional arrays 131
-ne 101
negative indexing 130, 302
nested data structures 145
nested interactive session 277
nested loops 160
nested pipelines 316
nested prompt 277

subshell 278
nested prompt level 279
nested session 279
nested shell level 280
nested statement 176
NET API 391
.NET assembly, loading 406
.NET class 437
NET coverage 393
.NET exceptions 268
.NET frameworks 283, 334,

391
.NET interop wrapper 418
.NET method 357
.NET type conversion 286
.NET WebClient object 407
.NET XML APIs 357
.NET/COM Interop library 393

network programming 361
new error 257
new interactive session 279
new language features 243
new object 240
new session 277
__new_instance function 239
New-Employee function,

example 515
New-Item cmdlet 249, 306
newline 44
newline character 317
new-menuitem scriptblock 384
new-menustrip function 384
new-object 4
New-Object cmdlet 235, 351

COM 393
limitations with generics 359

New-Object command, VB-
Script vs PowerShell 496

New-PSDrive cmdlet 307
news aggregation site 408
NewScriptBlock() method 247
NextMatch() method 305
NextRunTime property, task

scheduler 511
No to All 275
-noclobber parameter 141
non-numeric string 91
non-PowerShell

applications 308
nonstructured exit 159
non-terminating errors 252, 261
non-zero value 261
notation 67
-notcontains operator 106
note member 242
note property 512

definition 226
setting 230

notepad.exe 33
notepad.exe command 308
NoteProperty 225, 229

with ScriptProperty 230
NoteProperty object 235

notype parameter 519
nouns 237
number of occurrences 301
number of pipeline

commands 255
number of revolutions 390
number of words 300
NumberToken, PowerShell

grammar 529
numeric comparison 102
numeric context 105–106
numeric conversion rules 103
numeric literals 64

O

object being assigned 274
object constructor 283
object normalization 224
object stream 230
object-based shell 298
ObjectNotFound error 255
object-oriented 185, 223
offset in the script 255
OK button 374
on error, VBScript vs

PowerShell 498
one-dimensional arrays 131
one-way hashes 453
op_ 88
op_Addition 88
op_Division() method 96
opacity 388
Open() method 353
OpenDataBase(), Windows

Installer 421
operand 116
operating on binary data 113
operator semantics 114
operators 87, 145
Option all, tracing 285
Option Explicit 276

VBScript 497
-Option parameter 285
option syntax 477
–or operator 113
542 INDEX

organizational unit, Active
Directory 515

origin 0 352
original 92
original type definition 342
origin-zero 72
out-default 52
outer scope 267, 269
OuterXml property 337
Out-File cmdlet 53, 140,

313, 318
synopsis 141

Out-Host cmdlet 53
Outlook Express 451
Out-Null cmdlet 52
output and formatting sub-

system, v.s. VBScript 429
output message 263
output objects 263
output redirection 138

formatting 139
merging error and
output 139

output stream 253, 313, 411
Out-String cmdlet 53
overriding a method 233
overwriting output 141

P

PadLeft() method 316
page, displaying 408
param keyword 208, 213
param statement 208, 219, 390
parameter binder 47–48, 288

algorithm 289
steps 288
trace category 287

parameter processing 188
ParameterArgumentToken,

PowerShell grammar 529
parameterDeclarationExpres-

sionRule, PowerShell
grammar 526

parameterDeclarationRule,
PowerShell grammar 526

parameterized macros,
doskey 487

parameterized property,
definition 399

ParameterizedProperty 225
parameters 31, 45
ParameterToken, PowerShell

grammar 528–529
parameterWithIntializer, Power-

Shell grammar 526
parent scope 282
parentheses 119, 135
Parse() 84
parseCallRule, PowerShell

grammar 527
parsing 25, 37, 257, 512

modes 42, 183
process 311

partial cmdlet names 16
partial name 347
pass by reference 493
passed 179
–passthru parameter 226
password 466, 468
Password property,

ProcessStartInfo 471
PATH environment

variable 450
path parameter 289, 313
PATHEXT environment

variable 450
patience, practice, and

experimentation 311
pattern matching 114, 161, 165

operators 107
peer-to-peer networks 443
Perl 9, 26, 108, 180

security 441
vs PowerShell 493

Personal Information Exchange,
Certificate Export
Wizard 463

PHP 26
physical path 308
Pi 78

pipe operator 478
pipeline 45, 71, 148, 150, 199
pipeline object 288–289
pipelineRule, PowerShell

grammar 521
PKI. See Public Key Infrastruc-

ture
plus-equals 73
point class 238
polymorphic 89

behavior 145, 185
definition 72, 88

Popup method,
WScript.Shell 403

port number 364
positional parameters 183, 189,

288, 290
PositionMessage member 255
POSIX 9, 27
postfix operators 118
postfixOperatorRule, PowerShell

grammar 527
PowerShell

as a management tool 252
basic navigation
commands 477
basic structure 54
blog 364
call operator & 480
community 421
errors 255
event log 291, 294
grammar 149
help files 330
help text files 300
installation directory
319, 334
interpreter 283, 304
language, extending 238
path 308
provider 307
provider infrastructure 144
runtime 247
scripts 260
SDK 356
INDEX 543

PowerShell (continued)
semantics 391
session 293
setting the exit code 210
snap-in 292
Software Developers Kit
282, 306
syntax, scriptblocks 215
type converter 359–360
type system 222, 233
variables 478
VBScript and Jscript 417

precision and converversion
56, 79

predefined aliases 35
preference setting 264
prefix operators 74, 118
PrePostfixOperatorToken,

PowerShell grammar 529
PreRelease code, checking for

example 491
price element 336
primary key 518
primitive data type, XML 322
primitive types 341
printf debugging 270
private certificate, creating 462
private key 453
Problems with COM 399
process clause 204, 220
process current working

directory 356
process keyword 202
process streaming 46
processing

log files 298
RSS feed 391
text 297

processing strings 305
process-object clause 46
ProcessRecord clause 289
ProcessStartInfo object 471
ProgID 394

Apple iTunes 395
Microsoft Word 395

programming 147
languages 215
patterns definition 215

prompt 34, 278
function 485

PROMPT variable
cmd.exe 484
powershell 485

prompting 271
properties 134, 225

WMI 435
XML 322

Properties member 234
Property 225
–property 21
property dereference

operator 132
property names 254
property setter method 324
property unification 224
propertyOrArrayReferenceOper-

ator, PowerShell
grammar 527

propertyOrArrayReferenceRule,
PowerShell grammar 527

PropertySet 225
prototypes 223
provider abstraction 305
provider infrastructure 309

property unification 224
ProviderPath 308
ps command 489

UNIX 490
PS* properties 224
.ps1xml extension 244
PSBase 236, 325
PSBase property 302

WMI 424
PSCustomObject type 231
PSCustomType 242
PSDrives 307
PShost parameter 285
PSIsContainer 224
PSObject 58, 236

data binding 385

metaproperty 233
Synthetic object root 225

PSObject class 233
PSPath 235
PSScriptMethod object 239
PSScriptProperty 236
PSTypeConverter 84
public decryption key 453
public fields 222
public key 347

encryption 453
Public Key Infrastructure

(PKI) 454
public members 222
public methods 222
public properties 222
pure synthetic objects 242

definition 231
Put() method

Active Directory 513
WMI 435

pwd alias 308
PwrSpiral.ps1 script 388
Python 9, 108, 137, 191

lambda 216, 219
security 441

Q

quantifier, regex 304
query, XPath 337
quiet switch 321
quotation marks 29
quoting 38

for doskey macros 486

R

random number generator,
.NET class 414

range operator 130
rangeExpressionRule, Power-

Shell grammar 527
RangeOperatorToken, Power-

Shell grammar 529
RawUI member 271
544 INDEX

read a single key 271
read console, $host 271
read methods, $host 270
ReadCount parameter 316, 326
Read-Host cmdlet 271, 466
reading a binary file 315
reading files in PowerShell 313
reading text files 313
ReadLine() method 271

call console subsystem 485
real path 308
Really Simple Syndication

‹RSS› 4
recording errors 252, 255
–recurse 30
-recurse switch 30
recursive 199
recursive directory listing 189
recursive invocation 277
redefine functions 279
redirecting errors, to a file 253
redirecting the error stream 256
redirection 18, 52, 88,

205, 207, 263
error stream 253

redirection into a variable 253
redirection operator

138, 144, 253
design rational 102

RedirectionOperatorToken,
PowerShell grammar 528

redirectionRule, PowerShell
grammar 521

redraws the form 388
reduce the attack surface 445
reference types 70
ReferenceOperatorToken,

PowerShell grammar 529
Reflection.Emit 249
[regex] 77

Split() method 370
[regex] cast 304
[regex] class 303–304
-regex flag 164

registry keys
COM 394
execution policy 451

regular expression engine 305
regular expressions 107–108,

164, 297, 303–304, 319, 350
default match 110
extracting text with 111
matching any character 112
matching the beginning of a
string 112
submatches 109

rehydrated data 509
relative paths 308
remainder 96
remedial action 256
remote access security 449
RemoteSigned 207

definition 451
remove a class definition 241
remove duplicates 301
remove functions 306
remove variables 306
Remove-Employee function,

example 517
Remove-Item cmdlet 306
removing items, hashtable 68
rename functions 221
rendered to displayable text 253
rendering an object 54
REP 6
-replace operator 109, 304,

402, 407
repository, WMI 435
repudiation, definition 444
request/response protocol 369
resize array 195
resizing form 376
Resolve-Path cmdlet 308, 357
response header, HTTP 370
restricted execution policy,

definition 451
retrieving a simple web page 391
return an enumerable object 353
return keyword 353

return statement 198, 209, 495
returning function objects,

ScriptControl 416
returning values 193

VBScript vs PowerShell 497
reverse a string 227
reverse an array 227
Reverse member 131
reverse method 228
reversed in place, arrays 228
rich error objects 252
rich objects 252
right aligned 138
right operand conversions 102
rmdir 52
roles, definition 446
root directory 88
routing, trace events 284
row styles 379
RSS 4
RSS feed 362

COM 407
Ruby 222
Run() method,

WScript.Shell 404
runas.exe command 469
runspace 356
runtime 257
runtime type casts 116
runtime type conversion

error 142

S

sandboxing, definition 449
save XML document 324, 326
scalar 158
scalar arguments 179
scalar comparisons 104
scalar value 75, 102, 158
scale() method 242
schtasks.exe 510
scientific notation 57
scope 267, 282
scope modifier 208
scoping rules 190, 208
INDEX 545

script author 264
script calls 273

calling another script 257
script commands 28
script debugging 252, 281, 294
script name 255
Script Property

getter method 229
setter method
implementation 229
setter scriptblock 229

script scoped 209
script signing 475
script tracing 271
[scriptblock] 77
scriptblock 170, 172, 215

argument 173
as event handlers 373
begin clause 219
construction 220
creating scopes 267
defines a function 221
end clause 219
in breakpoints 280
literal 219
parameter 302
process clause 219
security 471
syntax 220

scriptblock literal 219
ScriptCenter 425
ScriptControl object 437

Script host 415
scripting language 251, 297

security 442
scripting Windows 403
ScriptMethod 225, 227–228
ScriptProperty 225, 229

with NoteProperty 230
scripts 177, 205

exit code 261
running from cmd.exe 210
stream output 213

SDK 30

secondary prompt 21
secure by default 449
secure environment 443
secure hashes 441
secure hashing algorithm 453
secure scripts 440
Secure-by-Default 474
SecureString class 475
securing PowerShell

installations 465
security 206

alerts 443
consultant 446
model 445
modeling concepts 440

sed command, UNIX 492
select elements 230

XPath 338
Select() method 336
SelectNodes() method 339
Select-Object cmdlet 21, 230,

318, 460
constructing objects 427
member selection 232

Select-String cmdlet
319, 342, 482

self-signed certificate 458
definition 454

semicolon 43, 149, 152, 193
sending keystrokes 396, 438
SendKeys() method,

WScript.Shell 404
sensitive data, security 465
separator 208
sequence of digits 304
sequences of spaces 304
serialization 339
<SerializationDepth>

element 342
serialized with fidelity 342
server applications 293
ServicePackInEffect field 505
set shell command, UNIX

shell 490

Set-AuthenticodeSignature
cmdlet, security 459

Set-Content cmdlet 145, 313
Set-EmployeeProperty function,

example 516
Set-ExecutionPolicy

cmdlet 206, 451
SetInfo() method, Active

Directory 514
setlocal/endlocal keywords 480
Set-PSDebug cmdlet

271, 275–276
settable property 227
SHA-1 (Secure Hash Algorithm,

version 1) 456
shadowing an existing

property 236
shared libraries 346
shell environments 46, 192, 333
shell function 28
shell language

existing standards 8
string-based 9

Shell.Application object 396,
402

ShellExecute API 471
Show() method 374
ShowDialog() method 374, 385
shredding objects 341
side-effects and the for

statement 154
sigils, Perl 493
sign scripts 458
signature 351

decrypt 453
signature information,

security 459
signing a script 453
signing authority 453, 460
signing certificate 464

creating 457
definition 454

signing infrastructure 452
Silently Continue, Error

Preference 262
546 INDEX

simpleLvalue, PowerShell
grammar 521

single precision 57
single quotes 39, 247
single string 326
single-threaded apartment (STA)

mode 417
slices 291

multi-dimensional arrays 132
using range operator 130

slicing 129, 131, 145
Snover, Jeffrey, PowerShell

Architect 95
software updates 251
sort 19
Sort cmdlet 301
Sort-Object cmdlet 68, 301
Sort-Unique 302
Soul of a New Machine 8
sourcing 211
space character 317
special behaviors operators 89
special characters 40
special variable 157
speech and PowerShell 415
spelling errors 410
split a document 301
split a field 298
Split() method 168

definition 299
example 99
method signature 299

splitting and joining strings 298
splitting into words 300
splitting strings 298

SplitStringOptions 299
Spoofing, definition 444
SQL injection attacks 448
SQL query 449
square brackets 133, 312
STA thread 417
standard classes, WMI 423
Standard Parameter,

ErrorVariable 257
standard preamble, WMI 426

Start-LocalUserManager
command 470

Start-Sleep cmdlet 370
StartTime 104
state machine 333
state of interpreter 280–281
state transition, PowerShell

engine 292
state-machine pattern 331
statement list 265
statementBlockRule, PowerShell

grammar 520
statementList 151
statementListRule, PowerShell

grammar 520
statementRule, PowerShell

grammar 521
statements, flow-control

169, 175
StatementSeparatorToken,

PowerShell grammar 529
-static 77
static members 131, 223

accessing 136
static methods 136

reference operator 136
static typing 55
status variables 259
stderr 196
step parameter 275
stepping a script 277
stepping mode, exiting 279
stepping prompt 275
stepping through a script 275
Stop, Error Preference 262
stream combiner 140
stream merge operator

2>&1 253
stream of tokens 304
streaming 32, 46
streaming model 252
strict mode 271, 276
strict parameter, COM

issues 418
strict switch 393

STRIDE 474
definition 444

[string] class 304
[string], Join() method 326
[string], Trim() method 333
string 37, 164

executing 246
string concatenation 89, 180
string context 106
string expansion 178

suppressing 247
string format specifier

examples 137
string manipulation 362
string multiplication 92
String.Join method 135
StringReader object 336
strings 44
StringToken, PowerShell

grammar 528
strongly typed languages 142
structured error handling 252
structured programming 159
subclassing 223
subdirectories 30
subexpression 61, 119, 145,

150, 154, 187, 269
subexpressions 119
subshell 278
substring method 110, 135
subtraction 96
subtype 496
succeeded 110
Success property 305
Sum() method, adding 243
suppress all pattern matching

behavior 312
suspend feature 279
suspend operation 278
Suspend option 276–277
suspended session 277
swapping two files 144
swapping two variables 97
[switch] 77
switch parameters 188
INDEX 547

switch statement 112, 148, 161,
164, 189, 331
security 473

switch value 162
switches 188
SwitchParameter 85
switchStatementRule, Power-

Shell grammar 522
synchronous callback 433
syntactic analysis 37
syntactic features 478
syntactic sugar 141
syntactically complete 44
syntax 6, 34, 135, 155

Set-PSDebug 271
throw statement 268
Trace-Command 284
trap statement 265

syntax error 149
Synthetic member

objects 230–231, 236,
239, 512
alias property 225
definition 223

Synthetic Property 223–224
System.__ComObject 399

GUID 419
System.Array, extending 244
System.ArrayList type 359
[System.Collection.IEnu-

merator] 158
System.Collections.Array-

List 198
$error 256

System.Collections.Array-
List.Add() method 345

System.Collections.Generic.List
358

System.Collections.Hashtable
67

System.Data.SqlClient.SqlCom
mand 355

System.Datetime 95
System.DateTime class 95

System.Decimal 64
System.Delegate 373
System.Diagnostics.EventLog

505
System.Diagnostics.Process

class 104
System.Double 64
System.Drawing namespace 388
System.Drawing objects 379
System.Environment class 355
System.EventHandler 372–373
System.Int32 64, 75
System.Int64 64
System.IO.File Class,

considerations 357
System.Management.Automa-

tion 76
System.Management.Automa-

tion.CommandInfo 216
System.Management.Automa-

tion.PSCustomObject 231
System.Management.Automa-

tion.PSObject 225
System.Management.Manage-

mentClass 431
System.Management.Manage-
mentObject 430
System.Management.Manage-

mentObjectSearcher 429
[system.net.webclient] type 361
System.Object, root of object

hierarchy 225
System.Reflection

namespace 420
System.Reflection.Assembly

347
System.Security.SecureString

466, 469
System.String 77

testing types 226
System.Text.RegularExpressions.

Match 305
System.Timers namespace 349
System.Timers.ElapsedEvent-

Handler 350

System.XML.XmlDocument
322

System.Xml.Xsl 339
SystemRoot environment

variable 143

T

tab character 298
tab completion 16, 459

on properties 17
on variables 16

TabExpansion function 17
table layout 384
TableLayoutPanel 380, 384

WinForms 385
tabs and spaces 298
tampered with 453, 461
Tampering, definition 444
target object 257
TargetInstance property,

WMI 434
TargetObject member 255, 259
task scheduler 510
TCL/TK 371
telecommunications 7
template 222
temporary file 144, 319
temporary Internet files 310
Terminal Server service proper-

ties, listing 501
terminate part of an

operation 264
terminate PowerShell

session 293
terminating error 252, 261,

264–265, 269, 288, 294
definition 265
exception 265

terminator 43
terminology 27
test(1) command 102
Test-Path cmdlet 141
text box 380
text files 297
text operations 342
548 INDEX

text processing operators 298
text, dealing with 297
Thompson, Ken 108
threat modeling 443, 474
threat to system, definition 444
three clauses 203
throw "My Message!" 268
throw an exception 267
throw ErrorRecord objects 268
throw keyword 268
throw nothing 268
throw statement

188, 268–269, 294
timer control 390

interval 390
title bar 373
title nodes 336
title of the window 400
tlbimp.exe utility, COM

interop 419
tokenization 37, 304

cmd.exe vs powershell 483
tokenize a string 304
tokens 37, 150
Tom's Hardware 442
Tool Command Language 371
tools and techniques, script

debugging 294
top-level document 325
top-level match 110
ToString() method 238, 242,

274, 318
on scriptblocks 248

total number of bytes 315
TotalCount parameter 316
ToUpper() method string 492
Trace Category

parameterbinding 285
typeconversion 285

trace events 284–285
trace listener 284
trace log 291
trace messages 290
trace mode 272

trace records 284
Trace-Command cmdlet
48, 284, 290
trace-command cmdlet

270, 283
tracing 252

capabilities 270
function calls 273
mechanism 283
parameter binding 287
type conversions 285
variable assignments 273

traditional scripting
languages 252

transcendental functions 479
transfer error control 265
transformation 230
transitional 35
translucency 388
trap all exceptions 265
trap block 266
trap handler 266
trap statement 265, 282, 384
trapStatementRule, PowerShell

grammar 524
triggered 165
Trojan Horse attack,

definition 450
truncated, tracing display 274
trusted third party

organizations 454
try/catch pattern 267
type accelerator 430, 437
type configuration files 244
type constraints 184

multiplication and arrays 94
type conversion 90, 185,

285, 323
in multiple assignment 99
messages 290
operators 89
tracing mechanism 103

Type extension 243
type files, loaded at startup 243
type library 419

type literal 75, 116, 285–286
use with static members 136

type parameter 253, 358
generics 360

type parameters 181
Type Shortcut

[char] 316
[regex] 304
[string] 298
[void] 495
[WMI] 429
[WMICLASS] 429
[WMISEARCHER] 429
[xml] 322

type system definitions,
updating 244

type system plumbing 233
type-constrained variable

91, 185, 496
TypeConverter 84
typeless parameters 55, 79, 183
TypeNames 234
type-promiscuous 56
types 55

explicit operations 116
implicit operations 116

types files, default installed 244

U

UI member, $host 270
unary operators 117, 352
UnaryOperatorToken, Power-

Shell grammar 529
unauthorized script 445
unbound mandatory

parameter 288–289
unconstrained 184
undefined variable 156, 276
underlying store, WMI 435
Unicode 60, 141, 314
unified namespaces 142
uninitialized variable 141
unique parameter 301
unique words 301
INDEX 549

universal support for
wildcards 309

UNIX 6, 8, 108, 192, 211, 259
UNIX shell 306, 476
unqualified operators, case insen-

sitive by default 101
unravel 158, 353
unrestricted execution policy,

definition 451
unsigned script 458
untrusted directory 450
untrusted source 370
untyped 181
Update-TypeData cmdlet 244
uppercase letters 320
URL 364
url member 401
USB device 434
use additional assemblies 347
user interface programming 385
user-defined function 289
UserName property,

ProcessStartInfo 471
UTF8 141

V

validation 230
security 473

value expressions 100, 176
value member 236, 305
valueRule, PowerShell

grammar 527
values from the pipeline 289
variable 18, 21, 141

$ErrorActionPreference 262
$host 270
drive 306
expanding 247

variable assignment, tracing 273
variable declaration 141
variable interpolation 247
variable name notation 143
variable namespace 88, 146
variable reference 39
variable scope modifiers 193

variable syntax 221
in cmd.exe 144

variable type attribute 142
VariableToken, PowerShell

grammar 528
VB.Net 437
VBScript 9, 108, 393,

415, 437, 496
code 425
date converter function 427
example 425
function 416, 427
WMI 423
WScript.Shell 403

VBScript CodeObject,
ScriptControl 415

VBScripts, that use WMI 426
vcvarsall.bat 483
verb-noun 34
verbose tracing mechanism

286, 289
version tolerant scripts 112
virtual memory 465
virtual method 233
visibility of variable 156, 190
Vista 442
Visual Basic 276
visual effects 390
Visual Studio 376

SDK directory 455
VMS 81
voidable statements 119
voided by default, C# vs

PowerShell 495
vulnerability 446

definition 444

W

WaitForNextEvent() method,
WMI 434

WbemScripting.SWbem-
DateTime, COM 429

web server 364
web server in PowerShell 391
WebClient API 362

well formed 112
where alias 105
Where-Object cmdlet 170–171,

173, 176, 215–216, 471
wheres Function

original version 472
safe version 473

while loop 23, 149, 151
whitelisting, definition 446
whitespace 50, 149, 298
WhiteSpace character class 298
widening

definition 56
rules 92
unexpected results 103

width of display 49
Wiktionary website 405
wildcard expressions 107
wildcard meta-characters 309
-wildcard option 163
wildcard pattern 163–164, 310

character ranges 107
matching a single
character 107
matching string of
characters 107

wildcards and quoting 309
Win32_AddRemovePrograms,

WMI class 423
win32_logicaldisk 22
WIN32_LogicalDisk class,

WMI 435
Win32_Process class 432

WMI 423, 429
window title, console

window 485
Windows calculator

application 404, 432
Windows calculator
applet 379

Windows Data Protection API
(DPAPI) 467

Windows event log 291
Windows Forms

application 376
550 INDEX

Windows Forms assembly 376
Windows GUI application,

COM 404
Windows installation

directory 315
Windows PowerShell in

Practice 293
Windows scripting tools

393, 437
Windows server

applications 421
Windows system

administrators 429
Windows() method, Shell 397
WindowsInstaller object,

COM 420
WindowsUpdate.log 167
winform library 376
winform.ps1 377
WinForms 4, 371

assembly 372
graphics programming 387

WinHTTP class
COM 407
request object 408

wizard 463
WMI 58, 393

dates 428
DMTF 422
documentation 423
events 433
in PowerShell 434
methods 424, 433
methods and events 438

objects 435
path 430
query 432
samples and resources,
adapting 436
types 438

WMIDateStringToDate
Function 428

Word document 411
Word.Application 418
worker function 240
wrapping objects, object

adaptation 233
write binary files, -encoding

parameter 318
write events 510
write messages, $host 270
write methods, $host 270
WriteEntry() method,

eventlog 510
Write-Host cmdlet 270–271
write-object 198
write-output 29
writing files 318
Writing Secure Code 445
writing secure code 474
WScript.Shell class, COM 403

X

xargs command 489
XML 49, 223, 287, 297, 322

Active Directory 515
attribute 326
configuration files 243

dealing with 297
document 322, 334, 338
document navigation 336
DOM 327, 394
element 330
fragment 337
pretty-printer 327
reader class 327

[xml] 77
type accelerator 430

XmlDocument object 339
XmlElement object 339
XmlNode object 324
XMLReader class 343
XmlReader object 330, 333
XPath 334

document 336
examples 335
navigator 336
query 336

XPathDocument object 336
XPathNavigator.Select()

method 339
XSLT 339

Y

Yes to All 275

Z

Zbikowski, Mark 317
zero 265
zone of influence 440
INDEX 551

	Windows PowerShell in Action
	contents
	foreword
	freface
	Part 1 Learning PowerShell
	Welcome to PowerShell
	1.1 What is PowerShell?
	1.1.1 Shells, command-lines, and scripting languages
	1.1.2 Why a new shell? Why now?
	1.1.3 The last mile problem

	1.2 Soul of a new language
	1.2.1 Learning from history
	1.2.2 Leveraging .NET

	1.3 Brushing up on objects
	1.3.1 Reviewing object-oriented programming
	1.3.2 Objects in PowerShell

	1.4 Dude! Where’s my code?
	1.4.1 Installing and starting PowerShell
	1.4.2 Command editing
	1.4.3 Command completion
	1.4.4 Evaluating basic expressions
	1.4.5 Processing data

	1.5 Summary

	The basics
	2.1 Command concepts and terminology
	2.1.1 Commands and cmdlets
	2.1.2 Command categories
	2.1.3 Aliases and elastic syntax

	2.2 Parsing and PowerShell
	2.2.1 How PowerShell parses
	2.2.2 Quoting
	2.2.3 Expression mode and command mode parsing
	2.2.4 Statement termination

	2.3 Pipelines and commands
	2.3.1 Pipelines and streaming behavior
	2.3.2 Parameters and parameter binding

	2.4 Formatting and output
	2.4.1 The formatting cmdlets
	2.4.2 The outputter cmdlets

	2.5 Summary

	Working with types
	3.1 Type management in the wild, wild west
	3.1.1 PowerShell: a type-promiscuous language
	3.1.2 The type system and type adaptation

	3.2 Basic types and literals
	3.2.1 Strings
	3.2.2 Numbers and numeric literals
	3.2.3 Collections: dictionaries and hashtables
	3.2.4 Collections: arrays and sequences
	3.2.5 Type literals

	3.3 Type conversions
	3.3.1 How type conversion works
	3.3.2 PowerShell’s type-conversion algorithm
	3.3.3 Special type conversions in parameter binding

	3.4 Summary

	Operators and expressions
	4.1 Arithmetic operators
	4.1.1 The addition operator
	4.1.2 The multiplication operator
	4.1.3 Subtraction, division, and the modulus operator

	4.2 The assignment operators
	4.2.1 Multiple assignments
	4.2.2 Multiple assignments with type qualifiers
	4.2.3 Assignment operations as value expressions

	4.3 Comparison operators
	4.3.1 Scalar comparisons
	4.3.2 Using comparison operators with collections

	4.4 The pattern matching operators
	4.4.1 Wildcard patterns
	4.4.2 Regular expressions

	4.5 Logical and bitwise operators
	4.6 Summary

	Advanced operators and variables
	5.1 Operators for working with types
	5.2 The unary operators
	5.3 Grouping, subexpressions, and array subexpressions
	5.4 Array operators
	5.4.1 The comma operator “,”
	5.4.2 The range operator
	5.4.3 Array indexing

	5.5 Property and method operators
	5.5.1 The “.” operator
	5.5.2 Static methods and the “::” operator

	5.6 The PowerShell format operator -F
	5.7 Redirection and the redirection operators
	5.8 Variables
	5.9 Summary

	Flow control in scripts
	6.1 Using the if/elseif/else statement
	6.2 The while loop
	6.3 The do/while loop
	6.4 The for loop
	6.5 The foreach loop
	6.6 Labels, break, and continue
	6.7 The PowerShell switch statement
	6.7.1 Basic use of the PowerShell switch statement
	6.7.2 Using wildcard patterns with the switch statement
	6.7.3 Using regular expressions with the switch statement
	6.7.4 Processing files with the switch statement
	6.7.5 Using the $switch loop enumerator in the switch statement

	6.8 Flow control using cmdlets
	6.8.1 The Foreach-Object cmdlet
	6.8.2 The Where-Object cmdlet

	6.9 The value of statements
	6.10 Summary

	Functions and scripts
	7.1 Function basics
	7.2 Formal parameters and the param statement
	7.2.1 Specifying parameter types
	7.2.2 Handling variable numbers of arguments
	7.2.3 Initializing function parameters
	7.2.4 Using switch parameters to define flags
	7.2.5 Variables and scoping rules
	7.2.6 Using variable scope modifiers

	7.3 Returning values from functions
	7.3.1 Debugging function output
	7.3.2 The return statement

	7.4 Using functions in a pipeline
	7.4.1 Filters and functions
	7.4.2 Functions as cmdlets

	7.5 Managing functions
	7.6 Scripts at long last
	7.6.1 Passing arguments to scripts
	7.6.2 The param statement
	7.6.3 Scopes and scripts
	7.6.4 Exiting scripts and the exit statement
	7.6.5 Dotting scripts and functions

	7.7 Summary

	Scriptblocks and objects
	8.1 Scriptblock basics
	8.1.1 Invoking commands
	8.1.2 Getting CommandInfo objects
	8.1.3 The ScriptBlock literal
	8.1.4 Defining functions at runtime

	8.2 Building and manipulating objects
	8.2.1 Looking at members
	8.2.2 Synthetic members
	8.2.3 Using Add-Member to extend objects
	8.2.4 Using the select-object cmdlet

	8.3 A closer look at the type-system plumbing
	8.3.1 Adding a property
	8.3.2 Shadowing an existing property

	8.4 Extending the PowerShell language
	8.4.1 Little languages
	8.4.2 Adding a CustomClass keyword to PowerShell

	8.5 Type extension
	8.6 Building code at runtime
	8.6.1 The Invoke-Expression cmdlet
	8.6.2 The ExecutionContext variable
	8.6.3 Creating functions using the function: drive

	8.7 Summary

	Errors, exceptions, and script debugging
	9.1 Error handling
	9.1.1 ErrorRecords and the error stream
	9.1.2 The $error variable and -ErrorVariable parameter
	9.1.3 The $? and $LASTEXITCODE variables
	9.1.4 $ErrorActionPreference and the -ErrorAction parameter

	9.2 Dealing with errors that terminate execution
	9.2.1 The trap statement
	9.2.2 The throw statement

	9.3 Script debugging
	9.3.1 Debugging with the host APIs
	9.3.2 The Set-PSDebug cmdlet
	9.3.3 Tracing statement execution
	9.3.4 Stepping through statement execution
	9.3.5 Catching undefined variables with strict mode

	9.4 Nested prompts and breakpoints
	9.4.1 Suspending a script while in step-mode
	9.4.2 Creating a breakpoint command
	9.4.3 The script call stack, or “How did I get here?”

	9.5 Low-level tracing
	9.5.1 The Trace-Command cmdlet
	9.5.2 Tracing type conversions
	9.5.3 Tracing parameter binding

	9.6 The PowerShell event log
	9.6.1 Examining the event log
	9.6.2 Exchange 2007 and the PowerShell event log

	9.7 Summary

	Part 2 Using PowerShell
	Processing text, files, and XML
	10.1 Processing unstructured text
	10.1.1 Using System.String to work with text
	10.1.2 Using regular expressions to manipulate text

	10.2 File processing
	10.2.1 Working with PSDrives
	10.2.2 Working with paths that contain wildcards
	10.2.3 Reading and writing files
	10.2.4 Searching files with the Select-String cmdlet

	10.3 XML processing
	10.3.1 Using XML as objects
	10.3.2 Loading and saving XML files.
	10.3.3 Processing XML documents in a pipeline
	10.3.4 Using XPath
	10.3.5 The Import-Clixml and Export-Clixml cmdlets

	10.4 Summary

	Getting fancy- .NET and WinForms
	11.1 Using .NET from PowerShell
	11.1.1 .NET basics
	11.1.2 Working with assemblies
	11.1.3 Finding types
	11.1.4 Creating instances of types
	11.1.5 PowerShell is not C#-A cautionary tale
	11.1.6 Working with generic types

	11.2 PowerShell and the Internet
	11.2.1 Example: Retrieving a web page
	11.2.2 Example: Processing an RSS feed
	11.2.3 Example: Writing a web server in PowerShell

	11.3 PowerShell and graphical user interfaces
	11.3.1 WinForms basics
	11.3.2 Example: "My first form"
	11.3.3 Example: Simple dialog
	11.3.4 Example: A WinForms library
	11.3.5 Example: A simple calculator
	11.3.6 Example: Displaying data
	11.3.7 Example: Using the GDI+ to do graphics

	11.4 Summary

	Windows objects: COM and WMI
	12.1 Working with COM in PowerShell
	12.1.1 Automating Windows with COM
	12.1.2 Networking, applications, and toys
	12.1.3 Using the ScriptControl object
	12.1.4 Issues with COM

	12.2 Working with WMI in PowerShell
	12.2.1 Exploring WMI-what is it, and why do you care?
	12.2.2 The Get-WmiObject cmdlet
	12.2.3 The WMI object adapter
	12.2.4 WMI shootout-VBScript versus PowerShell
	12.2.5 The WMI type shortcuts
	12.2.6 Working with WMI methods
	12.2.7 Working with WMI events
	12.2.8 Putting modified WMI objects back

	12.3 So which object model should I choose?
	12.4 Summary

	Security, security, security
	13.1 Introduction to security
	13.1.1 What security is
	13.1.2 What security is not
	13.1.3 Perception and security

	13.2 Security modeling
	13.2.1 Introduction to threat modeling
	13.2.2 Classifying threats using the STRIDE model
	13.2.3 Security basics: Threats, assets, and mitigations

	13.3 Securing the PowerShell environment
	13.3.1 Secure by default
	13.3.2 Managing the command path
	13.3.3 Choosing a script execution policy

	13.4 Signing scripts
	13.4.1 How public key encryption and one-way hashing work
	13.4.2 Signing authorities and certificates
	13.4.3 Creating a self-signed certificate
	13.4.4 Using a certificate to sign a script
	13.4.5 Enabling strong private key protection for your certificate

	13.5 Writing secure scripts
	13.5.1 Using the SecureString class
	13.5.2 Working with credentials
	13.5.3 Avoiding Invoke-Expression

	13.6 Summary

	appendix A: Comparing PowerShell to other languages
	A.1 PowerShell and cmd.exe
	A.1.1 Basic navigation and file operations
	A.1.2 Variables and substitution
	A.1.3 Running commands
	A.1.4 Differences in syntax
	A.1.5 Searching text: findstr and Select-String
	A.1.6 For loop equivalents
	A.1.7 Batch files and subroutines
	A.1.8 Setting the prompt
	A.1.9 Using doskey in PowerShell
	A.1.10 Using cmd.exe from PowerShell.

	A.2 PowerShell and UNIX shells
	A.2.1 Example: Stopping all processes
	A.2.2 Example: Stopping a filtered list of processes
	A.2.3 Example: Calculating the size of a directory
	A.2.4 Example: Working with dynamic values
	A.2.5 Example: Monitoring the life of a process
	A.2.6 Example: Checking for prerelease binaries
	A.2.7 Example: Uppercasing a string
	A.2.8 Example: Inserting text into a string

	A.3 PowerShell and Perl
	A.4 PowerShell and C#
	A.4.1 Calling functions and commands
	A.4.2 Calling methods
	A.4.3 Returning values
	A.4.4 Variables and scoping

	A.5 PowerShell and VBScript

	appendix B: Admin examples
	B.1 Getting active directory domain information
	B.2 Listing installed software features
	B.3 Retrieving terminal server properties
	B.4 List hot fixes installed on a machine
	B.5 Finding machines missing a hot fix
	B.6 Working with the event log
	B.6.1 Getting a specific EventLog object
	B.6.2 The event log as a live object
	B.6.3 Getting remote event logs
	B.6.4 Saving event logs
	B.6.5 Writing events

	B.7 Working with existing utility commands
	B.8 Working with Active Directory and ADSI
	B.8.1 Accessing the Active Directory service
	B.8.2 Adding a user
	B.8.3 Adding a group of users
	B.8.4 Updating user properties
	B.8.5 Removing users

	B.9 Joining two sets of data

	apendix C: The PowerShell grammar
	C.1 Statement list
	C.2 Statement
	C.2.1 Pipeline
	C.2.2 The if statement
	C.2.3 The switch statement
	C.2.4 The foreach statement
	C.2.5 The for and while statements
	C.2.6 The do/while and do/until statements
	C.2.7 The trap statement
	C.2.8 The finally statement
	C.2.9 Flow control statements
	C.2.10 Function declarations
	C.2.11 Parameter declarations

	C.3 Expression
	C.4 Value
	C.5 Tokenizer rules

	index

